QUANTITATIVE UNIQUE CONTINUATION: AN INTRODUCTION
AFTER A. LOGUNOYV - E. MALINNIKOVA

1. NOTATIONS

In what follows, we shall denote by A(z) a real d x d symmetric matrix defined in a ball
Bp, = {z € R%: |z| < Ry}, with W1 entries, uniformly elliptic that is,

(1.1) JA>0: (A(2)E,€) > A Ye?, Ve e R Vz € By,

and such that,

(1.2) A(0) = Td.
We set,
(13 ) = L,

It follows from the fact that A has Lipschitz entries that,

(1.4) A(z) = Id+O(z)), wx)=1+0(z]), A< pu) <A

2. THE DOUBLING THEOREM

The main result of this section is the following.
Theorem 2.1. Let u € H' be a weak solution of the equation,
Lu := div(A(x)Vyu) =0, in Bg,

and let R < %. There exists D > 0 depending on Rg,u,d, A and on the Lipschitz constants
of A such that, for every r € (0, R),

(2.1) / lu(z)|? de < D lu(z)|* da.
lx|<2r || <r
Notice that every weak H! solution is C* where a < 2.

The rest of this section is devoted to the proof of this result.

Remark 2.2. If u = P, is a homogeneous harmonic polynomial of degree n, an exact com-
putation shows that,

/ 1Py ()2 dar = 22"+d/ Py ()2 da.
|x|<2r lz|<r
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2.1. Preliminaries. We set for r € (0, R),

H(r) = = / (@) ful) ? dor,
|z|=r
(2.2)

I(r) :rld/|< (A(x)Vu(x), Vu(x))dx, N(r)= fi

(N (r) is called the frequency function.)
Lemma 2.3. There exists C > 0 depending only on d, A and on the Lipschitz constants of A
such that for any weak solution in H' of Lu =0,
rH'(r)
NN —
() N =G
Proof: Lemma 2.3 = Theorem 2.1

It follows from (i) that H'(r) < 2r 'N(r)H(r) + CH(r). On the other hand (i) shows
that for r < R we have, e“"N(r) < e“fN(R) so N(r) < e“B=") N(R) and,

H'(r) < (2r 'N(R)eC B + C)H(r).

+ O(r), (i3)  the function r — eC"N(r) is non decreasing.

Let us integrate %l on [p,2p]. We obtain, for 2p < R,

20 qr

- < (e“FLogd) N (R)

LogH (2p) < LogH (p) + 2N (R)e“" /
P
so,
H(2p) < exp(e“®(Logd)N(R))H(p).
It follows from the definition of H that,
(2p)1¢ / | (@) 2 doa, < exp(e“R(Logd) N(R)) / | (@) do

Dividing both members byp!~?, then integrating the inequality between 0 and r and using
the fact that A=! < p(x) < M we obtain for 2r < Ry,

2 CR 2
(2.3) /|$<2T|u(x)| dz < C(d, A, M)exp(e“"*(Logd) N (R)) /|x<r |u(z)|* de.

Remark 2.4. The constant D in (2.1) is of the form C(d, A, M)exp(e“®(Logd)N(R)). It
depends on u through the exponential of the frequency function N(R). It follows that the

quantity Tl 5y, is bounded by Ci(d, A, M)exp(e“"(Log2) N(R)). Therefore,

”u”LQ(BT)

Log(HuHLQ(BQT)> < Cy(d, A, M) + C5(R)N(R).
HU||L2(BT)

This remark will be useful later on.

Proof of Lemma 2.5. We have first,

(2.4) H(r) = r_d/ - div(Ju(z)[*A(z)z) dz.
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This is a consequence of the divergence Theorem. Indeed the unit exterior normal to the ball
beeing é—l the integral of the right hand side is equal to,

’U,JIZ [El’i Opr =T umzwazrd r
[, @ fdo = [ @ S doy = 1)

Let us compute the derivative of H. Using (2.4) we have,

= ' iv(|u(z)|?A(z)x ot
1oy =t [ div(uA)) dedor,

therefore,
H'(r) = —dr—4! / div(|u(:n)|2A(3:)x) dzr + r_d/ div(\u(w)\QA(x)m) doy,
|z|<r |z|=r
that means,
(2.5) H'(r) = —dr=H(r) + 4 / div(ju(z)[*A(z)z) do,.
|z|=r
Consider the integral in the right hand side. We have,
d d
(1) = div(Ju(@)PA@)) = 3705 (Ju@)? S ajule)ar).
j=1 k=1

It follows that,

/|x:T div(|u(z)|*A(z)z) dx = 2/

|z|=r

Therefore,
(2.6)

e div(ju(z)[*A(z)z) dv = 2/| _ u(x)(A(z)z, Vu(z)) do, + dri Y H(r) + O H(r)).
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Since A(z) is symmetric we have,

/ w(@)(A(2)z, Vu(z)) doy = / w(@)(A(2) Vu(z), 2) dor,
|z|=r |z|=r

X

'r/|_ u(z)(A(x)Vu(z), —) doy, —r/||< div(u(z)A(z)Vu(z)) dz,

7‘x

r/|< (A(w)Vu(x),Vu(x))dx—i—r/ u(z)div(A(z)Vu(z)) dz,

lz|<r
. / (A Vula), Vu) de

since Lu = 0. Therefore,

(2.7) /|= u(z)(A(x)z, Vu(z)) do, = r/ (A(x)Vu(z), Vu(x)) dz.

lz|<r
It follows from (2.6) that,

/| _ div(|u(z)|*A(z)z) do = 27’/ (A(2)Vu(x), Vu(z)) de + dr H(r) + O(r?H(r)).

lz|<r

We deduce from (2.5) that,

H'(r) = —dr_lH(r) + 2r1_d/ (A(x)Vu(z), Vu(x)) dx + dT‘_IH(T) + O(H(r)),

|| <r

= 2r1_d/ - (A(z)Vu(z), Vu(z)) de + O(H(r)).

According to the definition of I(r) en (2.2) we see that (7) is proved. Notice that from (2.7)
we have,

(2.8) I(r) —rd/|: u(z)(A(x)z, Vu(z)) doy.

By (i) we have rI(r) = $rH'(r) + O(rH(r)). therefore,

_ rH'(r) (rI(r))" _ rI(r)H'(r)
(29) N0 = Sk H(r)  HG?

Let us show (iz). We compute (rI(r))’. From (2.2) we have,

rI(r) = 12~ /OT/| ‘:t<A(x)Vu(m),Vu(x)>dat dt

+0O(r), N'(r)=

S0,

(2.10) (ri(r)) = (2 —d)I(r)+ 7"2_d/ (A(x)Vu(z), Vu(x)) doy,
|z|=r

Let w be a vector field such that (w,z) = r2 on |z| = r. Then,

1-d . i
r /|a:|<r div(w(z)(A(z)Vu(z), Vu(x))) de = r / (A(z)Vu(z), Vu(z))(w, v) do,.

|z|=r
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. o _
Since v = 7 we have (w,v) =7 so,

—d . o
Pl /x|<7‘ div(w(z)(A(z)Vu(z), Vu(z))) de = 7 / (A(z)Vu(z), Vu(z)) do,.

|z|=r

It follows that,
(rI(r)) = (2—d)I(r)+ rl_d/ div(w(z)(A(z)Vu(z), Vu(z))) dz.

Therefore,
(rI(r)) = (2 —d)I(r)+ (1) +(2),

(2.11) (1) =r* /x|<rU(I) dr, U(z) = div(w)(z){A(z)Vu(z), Vu(z))),

(2) =T1_d/ V@) V() =u(@)- V(4@ Vu(@), Vu(z).

Let us compute the term V(x). We can write,

d d d
Viw) = wj(z) Z Ojapq(@)Bpu(x)dqu(x) +2 ) wj(x) Y apg(x)d;0pu(w)dqu(z)
Jj=1 p,g=1 Jj=1 p,q=1
= Vl(x) + VQ(.CC).
We have,
d
(2.12) Vi(@) = (Apu(2)Vu(z), Vu(x)), Apw = (D widjap),_, 4
j=1

Now AVu = (ZZ | GpgOpt) Hess(u) = (0p0qu)

1<p<d’ 1<p, q<d

(Hess AVu Z 0;0 UZ ApgOqu = Z apq0jOpudyu.
p,g=1
It follows that,

Va(x) = 2(w(z), Hess(u) (x) A(z) Vu(z)) = 2(Hess(u) (x)w(x), A(z)Vu(z)).
We are going to simplify the term V2 We have,

(V(Vu,w), AVu) = Z@ Zwkﬁku AVU
7=1

d d
= Z 3 wkaku AVU —|— Z wka 8ku(AVu)
Jk= 7,k=1
= (Dw, Vu), AVu) + (Hess(u)w, AVu),
S0,
Va(z) = 2(V(Vu,w), AVu) — 2((Dw, Vu), AVu).
Then,

div((Vu, w)AVu) = (V(Vu,w), AVu) + (Vu, w)div(AVu) = (V(Vu,w), AVu),
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since Lu = 0. It follows that,

Va(z) = 2div((Vu, w)AVu) — 2((Dw, Vu), AVu).

z

=, we have,

Now from the Gauss-Green formula, since v =

(2.13) Va(x) do = 2r~1 /

|z|<r lz|=r

(Vu, w)(AVu,z) do, — 2/ ((Dw, Vu), AVu).

lz|<r
It follows from (2.11), (2.12), (2.13) that,

(2) = Tl_d/| - (Apw(x)Vu(z), Vu(z)) de — 2r1_d/ ((Dw,Vu), AVu)

lz|<r

+ 21"_d/ (Vu, w)(AVu,z) do,,
||
S0,

(rI(r)) =2 —d)I(r) + rl_d/ div(w)(x)(A(x)Vu(zx), Vu(x)))

lz|<r

+ rl_d/ (Apw(z)Vu(z), Vu(z)) dz — 2r1_d/ ({Dw(z), Vu(z)), A(z)Vu(z))
|| <r |zl <r
1
+ 27“_d/| = (Vu(z), w(@))(A(x)Vu(z), z) doy, = (2= d)I(r) + Y Ji.

k=1
We take w(z) = p(x) tA(z)z. It satisfies,

|95|2 2

w(@) = Oel) et (wla).a) = (A, x) = |of =,

if |x| = .

We \I;?QVG A(z) = Id + O(|z]) so A(z)z = 2 + O(|z]?), (A(z)z, ) = |2|* + O(|z|?), so, w(x) =
ErromE (& + O(|z]?)) = x + O(|z|?). Then,
Dw(z) = Id+ O(|z]), divw(z) =d+ O(|z]), Apw = O(z|),
(Vu(z), w(x)) = pla) " (Al)Vu(z), z).
Therefore,
Jy = drt™d /xlq(A(x)Vu(m), Vu(z))) dx 4 r14 O(|z])(A(z)Vu(z), Vu(x))) dz,

lz|<r

Jy < Cr*d / \Vu(z)|? d,

lz|<r

J3 = —2r1d/| - (Vu(x), A(x)Vu(z)) —i—rld/ (O(|z])Vu(z), A(z) Vu(x)),

|z|<r
J4 :2rd/||: u(m)71(<A(x)Vu(x),a:))2dar.
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According to (2.2) we have,
Jy=dI(r)+0O(r), J2=0(I(r), Js==2I(r)+0O(rI(r)),
Jy = 2r7¢ A(x)Vu(z),x 2da,,.
= [ (@), )
It follows that,
(rI(r)) =2 —=d)I(r)+ (d—2)I(r) + 2rd/ (<A(a:)Vu(a;), x))2 do, + O(rl(r)),

|z|=r

(2.14) (rI(r)) = 2T_d/ _ ((A(z)Vu(z), :1:})2 do, + O(rI(r)).

Recall that,

Ny =0, vy = LT ) = 210+ 010
Then,
N Iy HG) 1

N(r)  rI(r)  H(r) T.I(T)H(T)((N(T)) H(r) —rI(r)H' (r)),

_¥ ri\r ! r)—ar T 2 ri\r r
— o (T ) = 20(10))? + 0G0 HE))
_L rI(r ! r) — o r 2

- TI(T)H(T)(( I(r)) H(r) -2 (I( )) )+O(1).

Now from (2.8), (2.14) and the Holder inequality we have,

orl(r)? < 27“1_2d(/ M(@W(@Pdw) </|

|z|=r z|=r

ple) " (Alw)e, Vu(@)? doy ),

< (rI(r))H(r)+O(rI(r)H(r)).

We deduce eventually that,
N'(r)

1
in other words, there exists C' > 0 such that ]]\\[]/((:)) > —C. Then, %(eCTN (r)) > 0, which

proves (i) in Lemma 2.3.
([l

3. THE THREE-SPHERE THEOREM FOR ELLIPTIC OPERATORS.

Theorem 3.1. Let L = div(AV) where A is a uniformly elliptic symmetric matriz with
Lipschitz entries in a domain Q C RY. We assume that B(0,4R) C Q and A(0) = Id. Then,
for every r < R there exists a € (0,1),C > 0 such that for every smooth solution of Lu =0
in Q we have,

/x|—2r ‘u(*@‘z dogy < C(/M_T ‘U(x)‘ZdUT)a(/lxl_4r ’u(x)’2 dO’4T)1 «
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Proof. By Lemma 2.3 we have e“" N (r) < e2"N(2r) that is, N(r) < e“"N(2r) and N(r) =

gfg((:)) + O(1). Combining these two facts we get,

rH'(r) . (2rH'(2r)
2h() < ( 2H(2r) K)

2r Hl(p) 2r 2H/ 27‘
dp < / d + 2K/ — dp,
/r H(p) "

)
<0 2T2H( 2y +K/+2K/2po>
=\ HE) Y . P

since by Lemma 2.3 and the fact that N(r) > 0 there exists Ky > 0 such that H((T)) + Ky > 0.

It suffices to add (then substract) 2K in the integral to obtain a positive quantity.
Performing the integrations we get,

LogH (2r) — LogH (r) < €*“" (LogH (4r) — LogH (2r) + 2(Log2)K),

S0,

S0,
(1+ €M\ LogH (2r) < LogH (1) + 2" LogH (4r) + K" %",

which can be written, with a(r) = He%m,

LogH (2r) < Log(H (r))* + Log(H (4r))'~* + K" (1 — a).

Taking the exponential of both members, using the definition of H(p) and the fact that
A~ < p(x) < A we obtain the theorem. O

Corollary 3.2. Under the hypotheses of Theorem 3.1, for all r < R there exists o € (0,1)
and C > 0 such that for any smooth solutions of Lu = 0 in Q we have,

sup u] < C(sup [u])® (sup [u])' =

2r T 87

Proof. By Corollary 6.8 we have,

Ar
(1) := (sup |ul)? < Clr_d/ lu|? dz < Clr_d/ / lu|?do, dp,
|z|<2r |z|<4r 0 |z|=p
T
< C’gr_d/ / lu|? doy, dp
0 Jl|z|=4p

s(p) = /| _ Iufdog, m() = (sup )

|| <t

Set,

Using Theorem 3.1 with 2p then with p we get,

m(QT) < Cgr_d/o s(2p)a(2p)s(8p)1_a(2p) dp,

r (2
< C4rd/ [S(p)a(p)s(4p)1—a(p) ( P)S(Sp)lfa@p)dp'
0

By the maximum principle we can write,

s(t) < Cst®(sup [u])? < Cst(sup |u])? = C5t'm(t)
|z|=t x| <t
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so setting ai1(p) = a(p)a(2p) and bounding m(4p) by m(8p), we obtain,
m(zr) < Cor™® [ g m(p)™ Pm(sp) =) dp,
0

Since a(p) = the function oy est decreasing. So aq(r) < a1(p) and since m(p) < m(8p)

we get,

_ 1
14-e2Cp

m(p) 1) m(p) ()
(Wi)) "< (ngp)) :
It follows that,

m(27") < Cﬁrd/ pdflm(p)m(r)m(8p)1fa1(r) dp,
0

< Cﬁrd(/ pd*1 dp)m(r)al(’")m(Sr)lfal(r) < C’7m(r)°‘1(’")m(8r)1*°‘1m.
0

O

Corollary 3.3. There exist rg > 0,k large enough, C > 0, € (0,1) such that if B = B, is
a ball with r < Ry and By, = kB, C Q we have,

sup |u| < C(sup |ul)*(sup [u])' .
BQT By kr

Corollary 3.4. Let B ¢ K C ' C Q where B, are open, K is compact and Q' C Q.
There exists a € (0,1),C > 0 depending only on B, K,Q), L,d such that for any continuous
solution w in Q) of Lu = 0 we have,

l—«

sup [u] < C(sup [u]) (sup [ul)
K B Q/

Proof. Assume supgq |u| = 1. Fix a point mg € B. For any x € K there is a curve connecting

x to mg. Then there exists a finite sequence of balls (Bj)}]:1 with radius < rg such that

By C B, Bj11 C 2By, kB; C ¥ and z € By = B(x). Applying Corollary 3.3 we see that,
sup [u| < sup |ul < C(sup |u])®.

Bjt1 2B; B

Iterating this estimate we obtain,

J
sup lul < €y (suplul)® € (0,1).
By B
Eventually we use the fact that K can be covered by a finite number of ball B(zx). O

4. THE DOUBLING INDEX

Let u € C°(Q) be such that it does not vanish identically on any open subset of Q. For any
open ball B such that 2B (the closed ball of same center and double radius) is contained in
Q we set,

(4.1) A@(B)::L@g<§39¥iﬂﬂ).
supp |ul
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Example 4.1. Assume that P is a homogeneous polynomial of degree n and that B =
B(0,R). We have supyp [P| = supjyj<or(|2]" X0 |0=n @aw®) = (2R)"cn(w) and supp |P| =
R"cp(w) so, Np(B) = Log 2™ = nLog?2.

Let us compute the frequency function N(7) of an harmonic polynomial. In that case we
have p(z) =1 and H(r) = r1—¢ fsz |P(z)|? do,. On the other hand, by (2.8),

I(r)=r"¢ P(z)x - VPdo, = m’d/ |P(z)|* do,
|z|=r |z|=r
since, P beeing homogeneous of degree n, the Euler relation shows that, x - VP = nP. Then,

N(r) =38 =n.

In the general case we have we have the following result.

Lemma 4.2. Let B, = {x : |z| < r} and let u be a continuous bounded solution of Lu =0 in
Bp.

(i) There exists Cy > 0 such that , N,(B,) < C(N(R)+1), if4r <R.
(ii) There exists Co > 0 such that, N(r) < Cy(Ny(By) +1).
(7i1) There exists C3 > 0 such that, Ny (B;) < C3(Ny(Br) +1), if4r <R.
Proof. (i) There exists (see Corollary 6.8) C' > 1 depending only on d, A such that,
1,4 _d
(4.2) CH72|v]l 2, < lollpesy < CE 2 [0l L2(8y)-

Applying these inequalities with ¢ = 2r and ¢t = r we obtain,

Log(”uHLw(BQT)) < Log(COIU\Im(BM)) _ LOg(IIUHLz(Bm) +L0g(IIUHL2<Bw)) Lo

HUHLOO(B,n) ||u||L2(BT) ||UHL2(BQT) HUHL2(BT)
From the inequality (2.3) we have,
(4.3) / lu(z)|? de < Cye®2N™) / u(z)|? de,
|z|<2t |z|<t

where 2t < T and C5 depends only on d, A and the Lipschitz constants of A. Apply this
inequality with ¢t = 2r,t =r and T'= R. We get,

Log(HuHLz(B“)) + Log(‘uHLz(BQT)) < C3N(R) + Cy.
HUHL?(BQT) ||UHL2(BT)

[l Lo (B,

No(B,) = Log( ) < C4N(R) + Cs,

l|ull oo (B,
which proves (i).
(11) We use (i) in Lemma 2.3, that is,
B rH'(r) 2 B H'(r)

") =Smey TOU) = TN =

+0(1).

We integrate this inequality between %r and 27 where 0 < r < Ry. We get,

r 9 H(2r)

“N(p)dp < L Cr.
. 5 (p)dp < rEmi
2 2
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We use (see Lemma 2.3) the fact that the function p — e“?N(p) is non decreasing so,
N(p) > eCU=PIN(r) > e=“FoN(r). We deduce that,

H(2
(4.4) 2(Log2)e CRON (1) < Log (37”) +CRy.
H(§T)
Then we can write,
(4.5) H(2r) < C(sup |u])® < C(sup |ul)?
|x|=2r |z|<2r

On the other hand, by Theorem 6.5 we have for p > 0,

3
2P
||u”%oo(Bp) < Clpd/ lu|? dx = Clpd/ tdltld/ lu(x)|? doy dt

B%p 0 |z|=t

< (Cy sup H(t).
0<t<3p

Now from (¢) in Lemma 2.3 we have %l > —C so the function t — e“*H(t) is non decreasing.
We deduce that,

y 3
lullZec(s,) < Cse“ T H(r),
S0,
1 0460,7’
(4.6) — <
H(QT) HuHLoo(BT)
Using (4.5) we obtain,
2
i U (S8
H(gr) §C5eCTH ||L2 (Bar)
H(3r) [0l )

It follows that for r» < Ry,

H(2
Log (2r) < Cs + C7Ry + Nyu(B,).

H(5r)

We have just to use (4.4) to conclude.
(731) Indeed from (i) we have Ny (B,) < C(N(R)+1) when 4r < R and from (i) we have
N(R) < C(Ny(Bg) +1). O

4.1. Doubling index of the eigenfunctions. Let ¢, be an eigenfunction of —A, that is,
—Agpr = Apx, A > 0. Then h(t,z) = etﬁ@\ is a solution of (87 + A,)h = 0 and we can apply
the previous results. We obtain a three-sphere inequality and a notion of doubling index. This
has been used by Donnelly-Fefferman in their study of the nodal sets of the eigenfunctions.
A result they used is the following.

Theorem 4.3. Let (M,g) be a smooth compact Riemannian manifold without boundary.
There exists ro, C' > 0 depending on M such that for any eigenfunction of —Ag corresponding
to the eigenvalue \ we have,

Ny, (Br) <C(1+ \F/\)

This result suggests that the eigenfunctions of —A, corresponding to the eigenvalue A

behave like polynomials of degree v/.
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Proof. Set u(t,x) = etﬁdL\. Then u solves the equation (87 + Ay)u = 0 on R x M and we
may apply the previous results to u. We may assume that e sup,, |¢x] = |oA(T)] = 1. let
r > 0 be so small that for all z € M the geodesic ball of center z and radius r is contained

in a chart. Let k € N,k > 3. Let B be a ball of radius g in M and B = (=95 35) x B. We
D

choose a finite family of geodesic balls (B;);_; centered at (0,z;) in R x M of equal radius
oz such that,

El = E, §j+1 - 2§j, (O,f) S EJ.
We apply Corollary 3.2. We get,

17
sup [u] < sup|u| < C(suplul)”(suplul)' ™.
Bji1 2B; B; kB,

. 5 I r .
Since Bj = (—g5, 55) X Bj we have, sup g, lu| = e2kﬁsuij |oal, Sup 5. lu| < 62\/X, since,

SUPyp, |oa| < supyy |pa] = 1. We deduce that,
1
sup [¢a] > Cre™™ (sup |¢a]) 7,
B Bj1
where m = %(% - i) Therefore for all j > 2,
1
sup || > CPe™™VA (sup|ga|) ¥,
By i
where k; = Z%;g ﬁ, mj = mZé;g ﬁ Taking j = J and using the fact that supg, [¢x| = 1
since T € B we obtain,
sup |pa| > Ckie=miVA,
B
Let now B, be a ball of radius r which contains B and such that Bs, is contained in a chart.
We have,
sup |pa] > A
B,

S0,

supp, |#Al < sup s [#x| < 1 < ks gmaVA
supp, [pA| ~ supp, |pA| T supp, [¢a] T ’
and,
Supyp,, |9l
Ny (B :Log<$> <C(1+VN).
¢A( 7') SupBr ‘Qb)\’ ( )
O

4.2. The doubling index on cubes. If @ is a cube in R? of length side s(Q) we shall
denote by AQ@, for A > 0, the cube of same center and length side As(Q@).
We define the doubling index N, (Q) as follows,

SUPg, M)
sup, |u) '

N(Q) = sup Nu(a),  Nulg) = Log (

qcQ
12



Proposition 4.4. There exist positive constants a1, as depending only on A and on the Lips-
chitz constants of A such that for any cube Q@ C R with s(Q) < 1 and any bounded continuous
solution w of Lu = 0 in 2Q) we have,

Nu(Q) £ Nu(Q) < a1 Ny (Q) + az.

Proof. The left inequality is trivial. Let us prove the right one. Let ¢ be a cube, ¢ C Q =
{z:|z; — a;] < $s(Q)} where s(Q) denotes the length of a side of Q.

Cas 1. s(q) < cgs(Q),cq << 1.

Let b = b(a, %s(q)) the biggest ball inscribed in ¢. Then, 2¢ C kqb where kg = v/2d. Let
B = B(2%, 15(Q)). We have 2B C 2Q because if 2 € 2B we have,

1 1
g a5 <y — 28] + 122 — | < 15(Q) + 25(Q) = (@)
Now let m = 2% + p(a — 2%), p = 2(1J:\/g) and By = {z : |z —m| < Lus(Q)}. Then By C Q et
By C B. Indeed if x € By we have,
1 1 1
|2 —aj| = |zj—mj+mj—a;| < |zj—mj+(1-p)a) —a;| < Shs(@)+(1=p)5s(Q) = 55(Q).

On the other hand,

o= %] < Jo—m| + pla — 2] < Sps(@) + uVZs(Q) = g1+ VDS(Q) = 5(Q)

Let £ € N be such that 2¢ < kg < 2611, We write,

SUpPgq |ul _ supy |ul ¢ SUP L1 kb |ul e |ul

supg[ul = supy [ul L sup oy, Jul supy |ul

3 ﬁ SUD 1 kb |ul supgy, [u
< = Sup%kdb |u‘ Supy |U| .

It follows that,

(supzq |ul

14
1
< Ny(=—=kgqb) + Ny(b).
supq\u\ ) —Jz::l (2]—1 d )+ ( )

Since s(q) << s(Q) we deduce from (7i7) in Lemma 4.2 that,

(4.7) Log(

SUpgg [u|

T ) < Cy(Ny(B) + 1).

Now since the radius of By is uniformly equivalent to s(Q) by Corollary 3.4 there exist
constants A,7y € (0,1) depending only on the dimension such that,

v 1—r
supgu| < A(SupBO\UD (SUP2Q|U|> :
It follows that,
su u su u
Log(pw") > AlLog(p?Q") — Ay > A@og(w) — Ay = A1N(B) — 4>

supq |ul / supp, [ul supp [ul
13



since 2B C 2Q) and By C B. Using (4.7) we obtain,

sups, |u Supsyp |u
N (Q) = sup Log(QqH) < alLog(mH) + as
qCcQ Sup, |ul Supag |ul

where a; depend only on d.

Cas 2. s(q) > cq4s(Q).
In that case we can use the three-sets theorem with ¢ C @ C 2Q and we obtain with
constants depending only on the dimension (when s(Q) < 1),

<C v 1—”/’
suplul < C(sup ful)” (sup u]

which imply that,
st 1 sumsg 1 (b bl
supg [u| — C'\ sup,|ul / — C\sup,|u|/ ’
S0,

su U su U
gcQ -\ Supg [ul supyq |ul

4.2.1. A lemma on cubes.

Lemma 4.5. Let Q be a cube. We partition it into K equal cubes. Let q be one of the cubes
of the partition. Then,

(i) QC2KqC3Q, KqcC20,

. 1  3m 1 3m+1
(44) Ifqﬁ(i—k?)Q#@, then2qc(§+ % )Q, vm € N,
1 1
(i5i) Ifgn iQ #0, then qu C Q.
Proof. See the appendix. O

5. PROPAGATION OF SMALLNESS FOR SOLUTIONS OF ELLIPTIC EQUATIONS.

Let L = div(AV) be a uniformly elliptic operator with Lipschitz coefficients in ¢ R%.
We know that a solution of the equation Lh = 0 which vanishes on a set of positive measure
vanishes identically. The purpose of this section is give a quantitative version of this result.

Theorem 5.1. Let h be a bounded continuous solution of Lh = 0 in Q. Let E C ) be
measurable with strictly positive measure. Assume that |h| < e on E. Let K C Q be a compact
subset. Then there exists o € (0,1),C > 0 depending only on A,|E|,dist(E,09), K,d such
that,

(5.1) sup |h] < C(sup |h|)* (sup [n])' ™.
K E Q

The rest of this section is devoted to the proof of this result.

We begin by proving this theorem with K = @) where @ is the unit cube, 2 = 2Q and the
equation holds in 3Q, that is,

a l1-o
(5.2) sup|h| < C(sup 1)) (sup [A])' .
Q E 2Q

14



Remark 5.2. We notice that in the above theorem one may assume that supy |h| > 2supg |h|
otherwise (5.1) is trivial.
Indeed assume that supy |h| < 2supg |h|. Then,

sup |h| < 2sup|h| = 2(sup [a])*(sup |h[)'~* < 2(sup |[h])* (sup |h[)!
K E E E E Q

for every o € (0,1).
5.0.1. Preliminaries. We first prove that the solutions h for which supy [h| < & sup |h| have
a doubling index N = N, (Q) bounded below. For this we shall use Corollary 6.13.

Lemma 5.3. Let M = supg, |h|. Assume that supg |h| < %M Let by > 2 and Ky =21 > 1
be such that T(%O) < 2—14. Then, N > %Log(%) ‘= np.
Proof. Let £y > 2, Ko = 27" be such that 67(5-) <
Nu(Q) > Logs.

If N > 1 we are done since, 1 > %Log%. Assume N < 1.

Recall that N = N, (Q) = sup,cq Log(suP2q M). Cut Q into K¢ equal cubes and let ¢ be

sup, Jul

i. Then we shall prove that, N =

one of them. By Lemma 4.5 we have,

(5.3) Q C 2Kyq = 2%¢ c 3Q, Koq C 2Q.

Then, using (5.3) and iterating we obtain,

(5.4) M = sup |h| < sup|h| < eV sup |h), sup |h| < eV sup|h| < 3M.
Q 2tog q 2Q Q

By Corollary 6.13 with s = Kio, and the fact that oscagh < 2supyg |h| < 6M,

1 1 1 M
(5.5) 0SCqU = oscK%Kth < T(?O)OSCKth < T(E)OSCQQh < GMT(?()) < T
We may assume that sup, h = u(wg) > 0. Assume that N < %Log(%), then e~ Vfo > %.
Therefore, since M > 2supy |h|, for every cube ¢ we have,

1 1
inf h = sup h — oscyh > (e_NEO — ~)M > =M > sup|hl.
q q 4 2 E
This is a contradiction Therefore N > %Log(%). ([l
0

5.1. Remez inequalities for solutions of elliptic equations.

5.1.1. Introduction. Initially the Remez inequalities concerned polynomials. The question
was the following. If P, is a polynomial of degree n and if we know that,

{ze[-L1]:[P(@)| <1} =22-5 0<s<2,

(where | - | is the Lebesgue measure) can we have an estimate of the size of P, on [—1,1] 7
This was answered by Remez as follows. Under these hypotheses we have,

2+s
. P, <T,
(5:6) s P < T (5)

where T, is the Tchebycheff polynomial of degree n and we have equality if and only if

Py = £, (£25).

15



Here is a consequence of this result. Let E be a measurable subset of [—1,1] then,

8 n
(5.7 sup |Py| < (—=) sup|P,|.
) sup 1Pal < (77) sup P

The proof is the following. Take s = 2 — |E| € (0,2) and set P, = ﬁ. Then,

Ec{ze|-1,1]:|P,(z)] < 1}.

Therefore, N
o € [-1,1]: |P(@)| < 1} > [B| = 2—s.
We may apply the inequality (5.6) and deduce that,

~ 4—|F
sup |P,| < Tn< | |>
- 1,1] |E|
Now for x > 0 large enough we have, T,,(2z — 1) < (42)" and 2z — 1 = %HEl = T =y

Therefore if |E| is small enough we obtain (5.7).
According to the analogy made previously between polynomials of degree n and solutions of
elliptic equations with doubling index N, A. Logunov and E. Malinnikova prove the following.

Theorem 5.4. Let Q be the unit cube in R and let h be a bounded continuous solution of
Lh =0 in 2Q. Set N = Ny(Q) the doubling index and assume that N > ng. Then for every
measurable set E C Q with strictly positive measure |E|, we have,

|Q| CN
5.8 sup |h| < Csup |h|(C—= ,
where C' depends only on d and A.

5.1.2. Theorem 5./ implies Theorem 5.1. We have seen that,

supyq |1
——— > aN(Q) —az, a; >0.
supQ|h| ( ) J
We deduce that,
(5.9) MmN < 6a2sup27Q]h\.
supg |h

C
Assume (5.8) true. Choose C7 = C}(|E|) such that (C%) = e thatis Oy = a]'C'Log (C|Q||E|™Y).
Using (6.14) we obtain,

sup |h| < Ce™“ N sup |h| < Ce®™ sup |h|(sup ]h\)cl (sup |h])_c1
Q E E 2Q Q

so,
(sup [h])"F" < Cysup|A| (sup )"
Q E 2Q

and eventually,
1 C
sup |h| < Cs(sup|A|) €T (sup |h|) 71,
Q E 20

which proves Theorem 5.1 with o = ﬁ in the case where K = Q,Q = 2Q. The general
case can be proved as in Corollary 3.4.
Here is an equivalent version of Theorem 5.4.

16



Theorem 5.5. Let ) be the unit cube in R and let h be a bounded continuous solution of
Lh = 0 in 2Q such that supg |h| = 1. Set N = N(Q) > no and,

Eu(h) = {r €Q: [h(m)| < e}, a>0.
Then there exists 5 > 0,C > 0 depending only on A,d such that,
(5.10) [Ea(h)] < Ce™ N [Q,

Let us show the equivalence of these two theorems.
(1) Theorem 5.4 implies Theorem 5.5.

CN
By Theorem 5.4 we have 1 < C'supg, |h| (C%) . Take E = E,(h), then supg |h| < e so

ej[o)
_Ba
50, [Ea(h)] < C'|Qle™ N, B = &
(7) Theorem 5.5 implies Theorem 5.4.
Let |E| > 0. We have, supg, |h| < supg |h| = 1. If supg |h| = supg |h| the inequality (5.8) is
satisfied as soon as C' > 1. If supp |h| < sup |h| there exists a > 0 such that supg |h| = ™.

Then E C Eq4(h) and |E| < |E4(h)] < C’e*%|Q| so, 1 < 0%67%. Taking the power % of

CN 1 1
that, ('Ea(h)|> < Ce ®or, |Eq(h)| < C|Q|(Ce*)EN . Since N > ng we have Cov < C%%

both members we obtain,

1< e“(C’E%l)g = S%p|h|(0@>g,

which proves Theorem 5.4 if supg, |h| = 1; the general case can be obtained considering #@\h\'

The rest of this section will be devoted to the proof of Theorem 5.5

5.2. Beginning of the proof of Theorem 5.5. We begin by proving the result in the case
where & < ¢p and N < Ng. Then we shall make a double induction on a and N.
Cas 1. § <cp
In that case co — & > 0. Since E,(h) C @ we have,
|Ea(h)] < |Q] < 7N |Q| = e®e ¥ |Q).
Cas 2. no < N < No.

Proposition 5.6. let h be a bounded continuous solution of Lh = 0 in kqQ with supg |h| =1
and Np(Q) < Ny. Let Eq(h) = {z € Q : |h(x)| < e"*}. Then there exist positive constants
v, C' depending only on A,d, Ny such that,

[Ea(R)] < Ce™(Q).

Notice that since N > ng we have —vya < —%.
Proof. We have, sup ¢ Log SSILI;Q:'LZ' < Np. In particular if ¢ = %Q and since supg |h| = 1 we
have,
sup |h| > e Mo,
3Q

We combine this with a result about the oscillations. For that we recall some facts..
17



Lemma 5.7. Let Q be a cube and A € (0,1). Assume Lh = 0 in 3Q with supg |h| > X and
Nu(Q) < Ny. There exists K > 0,b € (0,1),mg € (0,1) depending on Ny,d, A but independent
of \ such that if Q is cut into K% equal cubes, Q = U;q; then,

(i) there exists a cube qy such that,

(5.11) inf |h| > moA,
a0

(ii) for every cube q; we have,

(5.12) sup|h| > bN Vi=1,...,K%

qi

Proof. Since Na(Q) = N;,(Q) and L(3h) = 0 it is sufficient to prove the lemma with A = 1
A
then to apply it to the function %h.
Let us show (5.11). Firstly, by Lemma 4.5, if ¢ N %Q # () we have, %Kq C Q. Next writing
%%q = q we apply (6.12) with @ = %q, s = % We get,

oscqh < T(%)OSC%qh < T(%)OSCQ}L

since the oscillation is a non decreasing function of the set. Now since N,(Q) < Ny and

supg |h| = 1 we have supi, |h[ > e ™o, Let 29 be such that |h(zo)| = supig |h| > e Mo,
2 2

Changing h into —h we may assume that h(zg) > 0. The point zy belongs to a certain gq.

Therefore gg N %Q # (). By the above estimate we have oscg h < T(%)OSCQh. Now,

oscoh = sup h — inf h < sup |h| + sup(—h) < 2sup |h| < 2.
Q @ Q Q Q
It follows that oscgyh < 27(+). Then,

3
inf h = sup h — h>e ™M —2r(=) >mp >0
in S;lop oscg,h > e 7( K) > my
si K >> 1. We fix K.
Let us show (5.12). Let ¢ be a cube of the partition. By (5.3) we have Q C 2Kq C 3Q.
Taking K of the form 2! we obtain, Q C 2‘q. Now from the hypothesis we have,
supy, |h

1
< Ny < sup |h| > —sup|h|.
Supq|h‘ q NO 2q

Iterating this inequality we get,

1 1
sup [h| > — sup |h| > — sup b > —.
q N§ otq N o N¢

O

Let us go back to the proof of Proposition 5.6.

We start from the cube @ which we cut into K% equal cubes Q = Uiql(l)
A = 1 implies that there exists i1 such that {z € Q : |h(z)| < mo} C Ui#lqgl). If we remove
qgll) it remains K¢ — 1 cubes. Each cube has measure %]Q\ so {z € Q : |h(z)| < mo}| <

(1- #MQ! Let us divide each small cube ¢ = q(l) (with i # 41) into K¢ equal cubes. We

i

. Lemma 5.7 with

may apply Lemma 5.7 with A = b. So there exists q(2) C ¢ such that infq(g) h > mgb. So

12 \
io

18



{z € q: |h(z)] < mob} C U#bqf). Since mob < mg the set {z € Q : |h(x)| < mpb} is

contenained in a union of at most (K — 1) x (K — 1) cubes having each a measure (ﬁ)Q.
Therefore,

1

{z € Q:|h(x)] < mob}| < (1— ﬁ)?

We pursue applying Lemma 5.7 with A = b2, ...,b"!; we find that,

1 e

— ) 19l

Let a > 0 be so large that mioe*“ < 1. There exists a unique £ € N such that b1 < mioe*“ <
b‘. By the above argument we have, |[{z € @ : |h(z)| < e} < (1 - %)Hl\Ql. Now there
exists v > 0 such that b7 =1 — %. It follows that,

{z € Q:|h(x)] <meb’}| < (1

—a 2
[ Q: Ih(@)] < e} < PEVIQ = P IIQ < P(E)1Q) < e Q)
0 0

5.3. End of the proof of Theorem 5.5. The induction argument consists in cutting the
cubes into smallest cubes and to find a cube having a small doubling index.
We begin by some useful Lemmas.

5.3.1. Distribution of the doubling indices. Let Qo be the unit cube and f € C°(Q). For
every cube ¢ such that 2¢ C Qg we have set,

Sup?q ‘f|

N =L .
10 =108 S, 17

Lemma 5.8. Let Qbe a cube, Q C Qp. Assume that Q is cut into K equal cubes q; where
K > 24. Set Npin, = min; N¢(q;). Then,

Ny(5Q) >

1 K

Proof. There exists xg € %Q such that sup1 |f| = f(zo). We have zg € ¢, for a certain .
Using Lemma 4.5 with m = 0 we find that 2¢;, C (% + %)Q
Now since N¢(gi,) > Niin and g € g;, we have,

sup | f| > e™min sup | f| > e"Nmin | f(x0)].
244 Tig

There exists a point z1 € 2¢;, such that |f(z1)| = SUPgg, |f|. So |f(z1)| > eNmin|f(zg)|. This

point 1 belongs to another cube ¢;, and since N¢(g;;) > Npin we have,

sup|f| > eNminsup | f| > eNmin|f(21)] > 2N f(ao))-
Qiq iy

There exists a point x3 € 2¢;, such that supy,, |f| = |f(x2)|. This point satisfies,

|f(w2)| > e*Nmin| £ ().

By construction z1 € ¢;; N 2q;, C ¢, N (% + %)Q Using Lemma 4.5 with m = 1 we see that
2;, C (3 +32)Q. So 22 € (3 + 32)Q. We construct a sequence (z;) such that |f(z;)| >
19



eINmin| f(z0)|, z; € (5 + 3%)Q We go until j = [%] Since,

2 K
the last point T belongs to () and,

1 S[K}

supl 1] 2 11(7)] 2 e L8N sup 71,

Now, [%} > % —-1> % if K > 24. It follows that, Nf( Q) > %Nmin- O

Corollary 5.9. Let L = div(AV) be uniformly elliptic in 2Qo and let h be a bounded contin-
wous solution of Lh = 0 in 2Qq. There exist constants Ngy, Jy such that if Q C Qo is cut into
J¢ equal cubes q; with J > Jy and Ni,(Q) > Ny then for at least one cube q we have,

Nila) < INA(Q).

Proof. We know that, Ny (q ) Ni(q)

< Np(q) + az. By the previous Lemma there exists a
cube ¢ such that, Nh( ) < SNL(3Q)
Say
Jo

< a
< S NW(Q)- Then,

Nia) < TENL(Q) + AR < 5AR(Q)

if Jp and Ny are large enough. O

5.3.2. Notations. We fix the ellipticity and Lipschitz constants A, C' and we consider Lh =
div(AV)h = 0 in 2Qy where Q) is a cube with volume 1. We are going to vary the parameters
N > 1 and a > 0 and our aim is to prove that,

(5.13) Eu(h) = {z € Qo : |h(z)] < e*asgp h]} = |Ea(h)] < Ce™ ¥ Qo).

We set,
m(u,a) = [{z € Qo : lu(w)| < e~*sup ul}], M(N,a) = supm(u,a)

0

where the sup is taken on all operators L = div(AV) and all w such that in Q,

(1) A(x) is a uniformly elliptic symmetric matrix, with Lipschitz coefficients
whose the ellipticity and Lipschitz constants are controlled by A and C,

(#7) w is a solution of Lu = 0 in 2Q,

(i7i)  Nu(Qo) < N.

The goal is to prove that M(N,a) < Ce'¥ where C and B will be independent of N.
Thanks to the Cases 1 and 2 considered before, we may assume that,

a
a>>1, N>CO’ N > Ny >> 1.

The first step consists in proving an induction relation on M (N, a) and the second one that
this relation implies (5.13).
20



5.3.3. The induction relation. We show that there exists ag > 0 and 0 < s < 1 such that,
1
(5.14) M(N,a)§M(§N,a—Na0)+sM(N,a—Na0).

Let u be a bounded continuous solution of Lu = 0 in 2Qy with N, (Qo) < N. Cut Qo into J¢
equal cubes ¢ where J = 2°. If NV, (Qp) < 3N then for all ¢ C Qo we have N, (q) < IN. If

contrariwise Ny,(Qo) > 2N > 1Ny >> 1 we can apply Corollary 5.9 and deduce that there

exists a sub cube g such that N, (go) < 3N. Since the union Q = Uq is disjoint (up to a set

2
of measure zero) we have,

m(u,a) = Z Hzeq:|u(z) <e® scgp lul}.

We shall show that there exists ag > 0 depending on J (ag =~ ¢) such that,

. sup (u| > e sup |u|.
5.15 > el
q Qo

Indeed by Lemma 4.5 we have Qo C 2Jq and Jq C 2Qq, where J = 2¢. By definition we have,

sup |u| > eV sup |ul.
q 2q

Iterating this inequality we get,

sup |u| > e N sup Ju| > e DN qup |u.
q 2¢+1g Qo

Then,

m(u,a) < E Hx € q: |u(z)] < e~ ataoN sup |u|}],
q
q

<Nz € qo: u@)] < e PN suplul}| + > [z € ¢ |u(@)] < e TN sup [uf}],
@ q#q0 4
< (1) + (2).

Let us estimate the term (1). The problem is that |go| = J =% # 1. Let o = {y = Jx : = € qo}-

Then,
\@zﬁwzﬂ/mzﬂwzl
q0 q0

Set v(y) = u(z) = u(%)), y € go. We have,

. I
le(A(%)Vy’U) (y) = ﬁdlv(A(ac)qu) (x) =0.
Now, since J > 1,

AN yil ly — /| o
A(5) - A(F) < == < Cly -,

Eventually, (A()&, &) > AE[* et Ny (do) = Nulgo) < 5N.
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We have,

{y € @ : o)l < em N suplo(y)[}] = dy,

o /{yeéﬁzlv(y)lée“*f‘oN supg; [v]}

= Je / dr.
{zeqo:|u(@)|<e 0N sup, |ul}

Since |go| = 1 the left hand side is bounded by M (3N, a — agN) so,
1
(1) < J‘dM(iN, a— agN).

We use the same argument for the term (2) except that here we have NV, (¢) < N. We obtain,
since J? — 1 terms are remaining in the sum,
1

(2) < (J*=1)J*M(N,a - agN) = (1 - ﬁ)M(N, a—agN) =sM(N,a —agN)

with s < 1, which ends the proof of (5.14).
5.3.4. The induction relation implies Theorem 5.5. Our goal is to show now that,
(5.16) M(N,a) < Ce™ ¥

where C > 0 is large enough, 5 > 0 small enough, by a double induction on N and a.
Recall that (5.16) is true in the two cases : (i) N < Ny Va >0, (#1) § < co.
Without loss of generality we may assume that : N = 2¢,¢ > ¢y, a = kag2’. We show that,

((5.16) true for N = 271 for all a) = ((5.16) true for N = 2 for all a)

Since § = kag the reminder (i) shows that (5.16) is true if k < ko := 22.

We describe the induction step going from (k — 1)a02£ to kao2’. By the induction we have,
M (2, (k — 1)ap2") < Ce Blh—Nao,
M2, (k= 1)ag2’) < e=28k=Dao,
We apply (5.14) and (5.16) we get, with s < 1,
M (2%, kaop2") < M(271, (k — 1)ao2%) + sM (2°, (k — 1)ae2"),
< Qe 2Pk=Nao 4 g0~ Alh=Dao,

(5.17)

The goal is to show that,
e~28(k=Nao | go—Bk—T)ao < ,—kBao
for k > ko and a certain 8 > 0. Dividing by e %8 we are left with,
e~ (k=2)Bao 4 geflao < 1.
We choose § such that se® < % that is, ef%0 < % + i or, Bag < Log(% + ﬁ) which is
possible since % + 2% > 1, then we take kg so large that e~ (k=2)Bao < %
O

6. APPENDIX

In what follows we prove Lemma 4.5 and we recall some properties of the solutions of

second order elliptic equations in divergence form.
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6.1. Proof of Lemma 4.5. Let us show (7). We may assume that,

={reR: |z g’_L} g={zeR": |z, (ij+2)E_%,0<z]<K—l}

We have first, |% — (i + 3)&| < £ — % Indeed,

If x € Q we can write,

, L L 1. L L L L L
$_(Zj+2)K’§$_2‘+‘2_(23+2)K Soty o SEEMGg

If x € 2K q we can write,

Eventually, if x € K¢ we can write,

L
2|~ 72K |2 2’K|~ 2 2 2K~ "2

Let us show (ii). We may assume that Q@ = {z € R?: [z; — $L| < 3L, 1< j <d}. Then,

g={z:|z; - (ij+HE <& 1<5<d}.

Lethqﬂ(%—F%) . Assume that there exists j such that z]K>3mé+%.Then,
o T T 1 A 2
o2 T M 2Kk 2 |77 Y 2K T K20 40 2K 2 2K

> (F+3)5
K 272
sox ¢ (377”4-%)@, which is absurd; therefore for all j we have ij < 3K +3m
Likewise assume that there exists j such that i; + % < K _ % — 3m . Then,
L 1. L . 1. L L L L L 3mL L
R R Rl ST T S T ST Ol
< smb L dm L
- 2K 4 K 272

which is absurd. Therefore for all j we have i; > {f 1 — 22 Summing up we must have,

(6.1) §—1—37mgijg%+37m.

We deduce hat,

L L 3mL 1.L L L L 3mL
"1k ek SWTIR TSI TR Tk
Let x € 2¢q. We have
- E <l D v E
T2 Y 2Kk Y 22K 2]
L L L 3mL 3(m+1) 1. L
“ktitawtaw Uk Ty



that is, 2q C (?)(mTH) + %)Q
Let us show (iii). We have, from (6.1), & —1 < i; < 25 If v € $Kq we have |z; — (i; +

1.L L 1.L L
(ZJ+§)E_6§$J§(%+§)E+€-
It follows that
K YL L, S 4L L 1, L . 1, L
4 27K 6 T=Vy T2 K 6 12 2K—”—12 2K

Therefore if K is large enough we have 0 < z; < L so x € Q.

6.2. Some properties of the solutions of elliptic equations. We consider in an open
set Q in RY a symmetric matrix A(z) = (a;j())1<i j<a With L>®(Q) coefficients such that,

d d
(6.2) | aij(@)€g5] < AP, > ai(@)&g = MEP?, Vo e Qv e RY
i,j=1 6j=1

We shall denote in what follows, L = 5 ¢ 9j(aij(z)8;) = div(AV).

2,7=1

6.2.1. Weak solution, sub-solution, super-solution. A weak solution (resp. weak sub-solution
faible, resp. weak super-solution) of L is an element u € HL () such that,

Z / aij(z)0u(x)0;p(z)dr =0 (resp. < 0,resp >0), VYo € Hy(Q), ¢ > 0in Q.
i,j=1

Remark 6.1. (i) in the définition above it is equivalent to take ¢ in C§°(€2).

(13) For smooth functions this definition is equivalent to the fact that Lu = 0 (resp.
>0,<0)in Q.
Lemma 6.2. (i) Let ® € W)"(R) be a non increasing convex function. Let u € H] () be

loc
a real valued weak solution of L. Letv = ®(u). Ifv € H} (Q) then v is a weak sub-solution

of L.
(ii) Let ® € Wllo’fo(R) be a non decreasing and convex function. Let u € HL () be a real

valued weak sub-solution of L. Let v = ®(u). If v € H. (Q) then v is a weak sub-solution
of L.

Proof. (i) Assume first that ® € CZ_(R). The hypotheses imply that ®/(s) < 0 and ®”(s) > 0
for all s € R. Let ¢ € C§°(€2). We have,

Z/awavajgoda:— Z/a” u)Oudjpdr = — Z/awﬁua ' (u)p) dx

2,j=1 7,7=1 ,j=1
—Z/(pfb" ) aij Ojudju doz = —(1) — (2).
B,j=1
The function 1) = —®’(u)y is non negative and belongs to H}(€2). Since u a solution the term

(1) vanishes. The term (2) is non negative by (6.2) and the fact that ®” > 0. Therefore the
left hand side is non positive.
2



Ifo e VVI})(?O (R) let . = p. » ® where p. an approximation of the identity. Then ®. is C?
and L = p. » &' > 0. Moreover D, is convex. Indeed let A € (0,1). Since ® is convex and
pe > 0 we have,

B(s + (1— N)sp) = / Pe)B((Ms1 — )+ (1 — N)(s2 — v)) d,

< [ (s~ dy+ 1= [ p)(s2 = )
< AP (s1) + (1 — X)Pe(s2).
Therefore we can apply the result obtained in the first part that is,

d d
(6.3) Z / a;j ;P (u) 0 pdx = Z / a;ij pe * 0;®(u) 0 pdx < 0.
ij=1"9 ij=1"9
By hypothesis 9;®(u) € L2 .(£2). Therefore p. x 9;®(u) converges to 9;®(u) in LZ (). Since

p € C§°(Q) we can pass to the limit in (6.3) and deduce that,

d
Z / Qi 82(13(11,) 8j<pda: < 0.
Q

ij=1
(73) The proof is the same. We have just to notice that Z‘ij:l Jo @ij O;u8; (®'(w)p) dz < 0

since u is a weak sub-solution. O

Remark 6.3. We have a similar result if ® € I/Vli’coo(((), +00)) and u > 0. The proof is the
same.

Example 6.4. Consider the function defined on (0, 4+00) by ®(s) = (Logs)~ that is (s) =0
if s > 1, &(s) = —Logs if 0 < s < 1. This is a continuous function on (0,+00), C* on
(0,1) U (1 + o0), locally bounded, decreasing and convex. We have ®'(s) = 0 for s > 1 and
P(s)=—1for0<s<1.

6.2.2. The Cacciopoli inequality.

Lemma 6.5. Let u € H} () be a positive weak sub-solution of L and w CC Q an open set.

loc

There exists C > 0 depending only on Q,w,d, A, X\ such that,
/]Vu(x)2da: < c/ ()2 da.
w Q

Proof. Let ¢ € C§°(92) be positive such that 1) = 1 on w. The function ¢ = 1)?u belongs to
HZ(Q) and it is positive. We have, by the definition of a sub-solution,

d
Z / Qi aZ’LL 6j (¢2U) dx < 0,
Q

1,j=1

which implies that,

d d
(1) = Z / a;j )2 Oiudjudr < =2 Z / Yuaij dudiy de = (2).
Q Q

i,j=1 i,j=1
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We have,
1) > A/qmvuy?dx.
Q
Next,

d
| Z aij Oju 05| = [(AVu, V)| < A[Vul| Vil
ij=1
so that using the Cauchy-Schwarz inequality we obtain,

(2)] <2A(/Qw2|w2dsc)5(/ﬂu%vwdac)é

Using these estimates and the fact that v» = 1 on w we deduce the lemma. O

Remark 6.6. If Q@ = B(zo,R) and w = B(zg,r) with » < R then C = = o (=0t where C'
depends only on d, A, A.

6.2.3. Moser iteration. We denote in what follows B(xg, ) the ball centered at xg with radius
r> 0.

Theorem 6.7. Let xp € Q and 0 < r < p be such that B(zo,p) C 2. There exists C > 0
such that for all positive sub-solution u € H}. (Q) of L we have,
(6.4) [l oo (B(wo,r)) < CllullL2(Bao,p))-

Corollary 6.8. Let xg € Q,r > 0 such that B(xg,3r) C 2. Then there exists C > 1 depending
only on d, X\, A such that for all positive sub-solution v of L in Q0 we have,

| 4 _d
(6.5) Cr 2 il 2 Baos) < 0o Baor) < CT 2110l L2(B(ag 2r)-

Proof of the Corollary. We apply the inequality (6.4) with o = 0,Q = B(0,3),r =1,p =2
to the function u(y) = v(zg+ry). Then u is a solution of another elliptic equation having the
same constants A, A. Moreover we have,

HUHL2(B(J?(), ) = 7"2 HUHL2 B(0,1)) et HU”LOO(B(Io,T)) = HUHL2(B(0,1))-
O

Proof of Theorem 6.7 . Consider a sequence of balls Bj = B(xg,r;) with 7; =7+ (p—7)277,
so that,

Bj+1 C Bj C---CBy= B(x(),p) andBs, = ﬂjeNBj = B(xo,r).
The method of proof consists in proving that there exists x > 1 such that we can estimate
HLLHLW-H(BJ_+ ) by Hu||LM( B;)" The existence of x comes from the following corollary of the
Sobolev embedding.

Lemma 6.9. Let k € [1, d%'lQ] ford>2, k € [1,400) for d=2. There exists C > 0 such that
for any ball B and any positive v € H'(B) we have,

[v* 1328y < CIIVOl T3 (m) + 10175 5))-
Proof. The Sobolev inequality implies that,

2K

1ol 5y = 0" 72(5) < CllvliE sy < CUIVOllz2a) + [0l r2s)

We have just to use the inequality (a + b)*® < 22%(a?" + b>~). O
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Lemma 6.10. Let k € (1, %2} ford > 2, k € (1,+00) for d = 2. Assume that u € H'(B;)

Let v be a weak positive sub-solution of L. Then u® belongs to Hl(BjH) and it is a weak
positive sub-solution of L in Bjy1. Moreover,

(6.6) w1225, ,) < C¥" + 1)||ull75 5,
where C > 0 depends only d, A\, A, r, p.

Bjt1)

Proof. Step 1. Let @ : [0,400) — [0,+00) be defined by ®(s) = s”. From the previous
lemma we have ®(u) € L?(B;).
For n € N* and s > 0 set 6,,(s) = (s + +)* and,

B an(s)7 0<s<mn,
209 = { 5 e+ 6,0 - ). 25 .

Notice that since k > 1 we have 6]/ (s) > 0 for all s > 0. The Taylor formula implies that,

1
B1() = O (n) + (5 — n)0ls(n) + (5 — m?/@ (1= N 87 (hs + (1 — A)n) dA,

so that,
Op(n) + (s —n)0(n) < 0,(s), s>0.
We deduce that for all s > 0 we have,

(6.7) By (s) < On(s) < 2°(s" + %) < 25 (s) + 1).

Step 2. The function ®,, is C, non decreasing, ®/, € L°°(0,+o00) ®” € L>(0,+oc0) and
®,, is convex. Indeed we have,

0,.(s), 0<s<n 07(s), 0<s<mn
/ _ n ) = —= 1Y " _ n ) = = Ity
P (s) = { 0, (n), s>n, u(s) = { 0, S > n.

Step 3. ®,(u) € H'(B;). First by Step 1 and (6.7) we have ®,(u) € L?*(B;). Next,
V&, (u) = &, (u)Vu € L?(B;) since u € H'(B;) and ®/,(u) € L>®(B;).

Step 4. ®,,(u) is a weak sub-solution of L. This results from the previous steps and from
Lemma 6.2.

Step 5. The sequence (®,,(u)) converges to ®(u) in L?(B;).

Indeed, for all sy > 0 (®,,(sp)) converges to P(sp). Then, from (6.7) we have, @, (u) <
2%(®(u) + 1). Therefore,

|5 (u) — ®(u)|* < C'(D(u)* +1) € LY(By).
We apply the dominated convergence theorem to conclude.

Step 6. ®(u) € H'(Bj11). Indeed, first by Step 1. we have ®(u) € L?(Bj1). Next, Step4.,
Lemma 6.5 and (6.7) imply that,

(6.8) IVOn (W)l r2(8;,1) < Cll®n(u)llr2(m)) < ClIL+ @(u)lr2(5;)-

The sequence (V®,(u)) is therefore uniformly bounded in L2(BJ+1) Then there exists a

subsequence such that (V®,,)(u))) converges weakly to v € L?(Bj41). On the other hand,

by Step 5. (V®,(,)(u))) converges to V®(u) in D'(Bjy1). We deduce that VO (u) = v €
H1

)
L*(Bjt1), so ®(u) € H'(Bj1).
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Step 7. Since ® is non decreasing, convex, and ®(u) € H(Bj41), Lemma 6.2 shows that
®(u) is a weak sub-solution of L. Since the difference between the radius of B; and that of
Bji1 is proportional to 277 it follows from Lemma 6.5 and from Remark 6.6 that,

/ VO (u)*dr < K22j/ |®(u)|? de.
B'+1

J J

Using Lemma 6.9 with v = u we deduce the inequality (6.6). O
We introduce then the sequence of functions defined by,
w; = u .

If u € H'(By) is a positive weak sub-solution of L we obtain, by induction, that w; belongs
to H1(B;) and it is a weak sub-solution of L in B;. Notice that w;+1 = (w;)". Set,

Nj = (lwjllr2s,)) = -
Using (6.6) we get,
+1 : : +1
N2 = w22,y = N0fl3as, . < C5% + Dl [25gs,) = C@Y% + NP
Therefore,

1
(6.9) Nj2+1 < (C(QQJ'H + 1)> kI +T Nj2-
We have,
J i1
(6.10) [[co = cTi ()" <o,
§=0

On the other hand set, Ay = H;]:O(QQJ'” + l)ﬁ Since 1 + 27% < 27%T1 we have,
J +oo .
1 . jr+1
LOgAJ = Z ﬁLog (1 + QJK) < LOgQZ W = ().
j=0 §=0

We deduce that Ay < e®. Using this inequality together with (6.9), (6.10) we obtain,

lim sup Nj2 < C’ﬁecoNg.

J—+o00
This shows that the sequence (IN;) is bounded. We shall deduce that u belongs to L>(B(zo,1)).
Indeed set M = sup N;. Then by définition of w; and N; we have,

/ \u|2”j dx < / ]u\Q"‘j dz < M
B(zo,r) B;

J
Set,
A={x € B(zg,7) : |u(z)| >2M}.
Then,
A[(2M)2 < / 2 da.
B(zo,r)

Combining these two inegalities we deduce that |A| < 272% for all j € N which implies
that |A| = 0. This shows that M is an essential supremum of u. Therefore u € L*(B(xq,7)).

Moreover M is bounded by a multiple of Ny which is the L? norm of u on the ball B(zg, p). O
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Remark 6.11. Let @ be a cube. There exists C' > 0 such that for all positive weak sub-
solution u € HL () of L in 2Q we have,

loc
(6.11) supu < Cllul|p2(g)-

3Q
The proof is similar to that in the case of balls. We have just to work with the cubes
Qj = 3(1+279)Q. We have Qj11 C Q;,Q0 = Q, Qoo = 5Q.
6.2.4. A result about the oscillations. We recall that the oscillation of a bounded function on
a set €1 is defined by,

oscou = sup u — inf wu.
Q Q

Notice that if 7 C Qo we have,
0sC, U < 0SCO,U.

Theorem 6.12. Let Q be a cube and u be a bounded continuous solution of Lu = 0 in 2Q).
Then there exists v = vy(d,A) € (0,1) such that,

osc%Qu < vyoscgu.
Corollary 6.13. Let h be a bounded continuous solution of Lh = 0. There exists for small

s > 0 a positive function 7(s) depending only on d, A such that 7(s) — 0 when s — 0 and for
all @ C Q,

(6.12) oscsgh < T(s)oscgh

Proof of Theorem 6.12. The proof needs several steps.
Stepl. Recall that there exists C' > 0 such that for all positive weak sub-solution v €
HY(Q) of L we have,

(6.13) supv < C||v||p2(@)-
3Q
Step 2. For all € > 0 there exists C = C(e,d) such that for all u € H'(Q) such that
{r € @ :u =0} >¢|Q| we have,

/\u!deSC/ \Vul|? dz.
Q Q

Indeed, otherwise there exists 9 > 0 and a sequence (uy)ken such that:
H{zr € Q:ur =0} > <0|Q), / lug|? dz = 1, / |Vug|* dz — 0.
Q Q

Therefore (uy)y is a bounded sequence in H'(Q). Then there exists a sub-sequence (Ug(k))k
which converges weakly to ug in H'(Q), so by compactness, it converges strongly in L%(Q).
We have fQ lug|* dz = 1. On the other hand, in D'(Q) the sequence (Vu,4))i converges to
Vugy and to zero. So ug is non vanishing constant. Then,

/ \ua(k) - UO‘Q dx Z / |ua(k) — u0|2dx Z ‘UO‘2€0’Q‘.
Q {Uoky=0}

The left hand side converges to zero while the right hand side is strictly positive, which is a
contradiction.
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Step 3. Let u € H'(2Q) be a positive solution such that, [{z € Q : u > 1}| > ¢|Q|. Then
there exists C' = C(e, d, A) > 0 such that inf1,u > C.
2
Let p > 0 and u, = u+p. Then, u, > p>0and {x € Q :u(z) > 1} C {z € Q : uy(x) > 1}
S0,
{z € Q up(z) > 1} > [{z € Q : u(z) > 1} > €Q|
_ 0, si up(z) > 1,
Set v, = (Logu,)”. We have, v,(z) = { Log upl(a:) s uZ(:L‘) <1
Since u, > p, v, is non zero if and only if p < u, <1 so that,

1
0 <wvy(xr) <Log—, Vzedl.
p
It follows that v, € L*(Q). Let us show that v, € H*(Q). Since the function v, is continuous

. . . . . 07 s1 UP($) Z 1a .
there is no jump in the derivative. Therefore, 0jv,(x) = O, Since

u, > p we deduce that,
Oju,

9500 <

1
< —|9ju,| € L*(Q).
p p
On the other hand, since v, is a positive sub-solution, (6.11) implies that,

1
sup v, < C’(/ vg(:n) dm) 2
1Q Q

Now, {z € Q : v,(z) = 0} = [{z € Q : up(x) > 1}| > €|Q|. Then Step 2 implies that there
exists C' > 0 such that,

1
(6.14) sup v, < C(/ |Vv,,(x)|2dac> ’

3Q @
We are going to show that the right hand side is bounded. Let § € C5°(2Q)) and § =1 on Q.
Take as a test function ¢ = % € H'(Q). Then we have, skipping the summations,

0= / a,-j(&-up)aj (i) dr = —/ 02—aw (aZUpg (a]ul)) dxr + 2/ —QCLZ] (BZUP)(aje) dz.
2Q 2Q 2Q

Up Up Up
We have,
[ OO 4 [ Vupl* 4,
20 u? - J20 Up ’
[ e e [ ) ([ o)
20 Up 2Q Up 2Q

from which we deduce, since § =1 on Q,

/ Vu,
Q

Up
/|va|2dm§/ ’Vup
Q Ql Up

3

0

2
dx < c/ VO|* d.
2Q

It follows that,

2
da < c/ V0% dax.
2Q




We deduce from (6.14), since v, = (Logu,)~ that,
sup v, = sup(Logu,)” < C.
3Q 3Q
Then on %Q, either u, > 1 or u, < 1 and —Logu, < C, that means, u, > e~ ¢ where C is
independent of p. Letting p go to zero we obtain, inf;Q u>C">0.
2
Step4. End of the proof. Set,
ap =supu, [ =infu, ag=supu, Py =infu.
Q Q 1Q 3Q
Consider the positive solutions ,
u— B al —u
, ou .
ar— ar— B

We have the following equalities,

A= {r e Qiule) 2 jon+ o) = fre @ U0
Ag::{xEQ:u($)<;(041+»31):{$€in>;}-

Since @ = A; U Ay and A; N Ay = () we have |Q| = |A;| + [As] so either |Ai] > £|Q]| or

|A2| > 3]QI.
Case 1. Assume that,

2(u(x) — 1
|An={er:(<)5”21Hz@L
a; — B 2
We apply Step 3. to the positive solution 26(57:21) Then there exists C' > 1 such that,
inf U=/ > l

lgan—p — C

from which we deduce that,

1
Bo = léncgu > B1+ 5(041 — B1).

Case 2. Assume that,

2 — 1
4] = {r €@ Ao —vlw) 1}' =
ar — B 2
By the same argument we obtain,
1
s =supu < a1 — 5(041 — B1).
3Q
Since B2 > 1 and as < a1 we get,
. 1 1
in Case 1. ay—fy <oq — (b1 + 6(061 - /) =(1- 6)(061 - B1),

1
inCase2. ay—fa<as— 1 < (1 - 5)(041 - B1),
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in other words, in both cases,
1
osc%Qu < (1 — E)OSCQU.
O

1

Proof of Corollary 6.13. For s << 1 we can write ﬂ% < s < 5.

obtain,

Using Theorem 6.12 we

OSC#Qu < fyoscizQu,
which implies, by induction that oscz%Qu < 'ygochu. Now, 2(+1 > % so that, £ > ﬁgQLog% —
1 = p(s) and, since v < 1 we have, v < 4*(5). Eventually since sQ C %Q we obtain,
0sCsQu < 'yp(s)ochu.
We have just to notice that p(s) — 400 when s — 0 so 7(s) = v*®®) = 0if s — 0. O
6.2.5. BMO norms of the eigenfunctions. Here is a Corollary of Theorem 5.5.

Proposition 6.14. There exists C > 0 such that for all @y satisfying, —Agpn = Apx we
have,

| Log|xlll Bro < CV/A,
Proof. Set v\ = Log |pal, (¥a)q = g7 Jo ¥a(2) dz. Then,

1
(6.15) [Log |ealllBpo =suplg Ig = / [ha(x) — (¥a)ql dz.
Q Q| Jo

Set cq = Log [|pall 1 (g) and Jg = ﬁ fQ |a(x) — cq| dz. We have,

1
(60 - cal = ’ /Q (Uaa) — co) da

It follows that,

1
< @,/Q aa) — coldo = .

1
Ig < Jg+ \QI/Q [(¥n)q — cqldr < 2Jq.

We are lead to estimate Jg.

We have seen in Theorem 4.3 that the doubling index of an eigenfunction corresponding
to the eigenvalue A is bounded by CvV/X for A > 1.

Set for (t,x) € (0,1) x Q,u(t,z) = etﬁgp,\. Then u is a solution of the elliptic equation
(0% + Ay)u = 0. Moreover NV, (Q) < Cv/A. Theorem 5.5 implies that,

_Ba
{(t,2) € (0,1) x Q: |u(t,z)| <e™®  sup  |ul}| < Ce X[Q).
(t,x)€(0,1)xQ

On the other hand, if [px(z)| < e™*supq || then, |u(t, z)| < e™*sup(; z)c(0,1)xq Iul, so that,
_ Ba
{re@:|pr() <e™ Sup [oal} < Ce 2@
Now, since cq = Log [[¢xl|L=(g) we have,

(6.16) {z € Q: |pa(z)[ <e™ sgplwl}\ =z €@:0(x) :=cq —a(r) > a}| < ce A Q).
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Therefore,
1 X

Jo = o(x dx<—2n—|—1\f\{x€Q 6(z) > nvVA}.

@ n—0 /{:L’EQ:n\/XSG(x)g(n—&—l)\f)\} ’Q’

Using (6.16) with a = nv/\ we get,

+o00o
Jo VA (n+1)e " < VA

n=0
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