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1. Notations

In what follows, we shall denote by A(x) a real d × d symmetric matrix defined in a ball
BR0 = {x ∈ Rd : |x| < R0}, with W 1,∞ entries, uniformly elliptic that is,

(1.1) ∃Λ > 0 : 〈A(x)ξ, ξ〉 ≥ Λ−1|ξ|2, ∀ξ ∈ Rd,∀x ∈ BR0 ,

and such that,

(1.2) A(0) = Id.

We set,

(1.3) µ(x) =
〈A(x)x, x〉
|x|2

.

It follows from the fact that A has Lipschitz entries that,

(1.4) A(x) = Id+O(|x|), µ(x) = 1 +O(|x|), Λ−1 ≤ µ(x) ≤ Λ.

2. The doubling theorem

The main result of this section is the following.

Theorem 2.1. Let u ∈ H1 be a weak solution of the equation,

Lu := div(A(x)∇xu) = 0, in BR0

and let R < R0
2 . There exists D > 0 depending on R0, u, d,Λ and on the Lipschitz constants

of A such that, for every r ∈ (0, R),

(2.1)

∫
|x|<2r

|u(x)|2 dx ≤ D
∫
|x|<r

|u(x)|2 dx.

Notice that every weak H1 solution is Cα where α < 2.
The rest of this section is devoted to the proof of this result.

Remark 2.2. If u = Pn is a homogeneous harmonic polynomial of degree n, an exact com-
putation shows that, ∫

|x|<2r
|Pn(x)|2 dx = 22n+d

∫
|x|<r

|Pn(x)|2 dx.
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2.1. Preliminaries. We set for r ∈ (0, R),

(2.2)

H(r) = r1−d
∫
|x|=r

µ(x)|u(x)|2 dσr,

I(r) = r1−d
∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx, N(r) =

rI(r)

H(r)
.

(N(r) is called the frequency function.)

Lemma 2.3. There exists C > 0 depending only on d,Λ and on the Lipschitz constants of A
such that for any weak solution in H1 of Lu = 0,

(i) N(r) =
rH ′(r)

2H(r)
+O(r), (ii) the function r 7→ eCrN(r) is non decreasing.

Proof: Lemma 2.3 =⇒ Theorem 2.1
It follows from (i) that H ′(r) ≤ 2r−1N(r)H(r) + CH(r). On the other hand (ii) shows

that for r ≤ R we have, eCrN(r) ≤ eCRN(R) so N(r) ≤ eC(R−r)N(R) and,

H ′(r) ≤ (2r−1N(R)eC(R−r) + C)H(r).

Let us integrate H′

H on [ρ, 2ρ]. We obtain, for 2ρ ≤ R,

LogH(2ρ) ≤ LogH(ρ) + 2N(R)eCR
∫ 2ρ

ρ

dr

r
≤ (eCRLog4)N(R)

so,

H(2ρ) ≤ exp
(
eCR(Log4)N(R)

)
H(ρ).

It follows from the definition of H that,

(2ρ)1−d
∫
|x|=2ρ

|u(x)|2 dσ2ρ ≤ exp
(
eCR(Log4)N(R)

)
ρ1−d

∫
|x|=ρ

|u(x)|2 dσρ.

Dividing both members byρ1−d, then integrating the inequality between 0 and r and using
the fact that Λ−1 ≤ µ(x) ≤M we obtain for 2r < R0,

(2.3)

∫
|x|<2r

|u(x)|2 dx ≤ C(d,Λ,M)exp
(
eCR(Log4)N(R)

) ∫
|x|<r

|u(x)|2 dx.

Remark 2.4. The constant D in (2.1) is of the form C(d,Λ,M)exp
(
eCR(Log4)N(R)

)
. It

depends on u through the exponential of the frequency function N(R). It follows that the

quantity
‖u‖L2(B2r)

‖u‖L2(Br)
is bounded by C1(d,Λ,M)exp

(
eCR(Log2)N(R)

)
. Therefore,

Log
(‖u‖L2(B2r)

‖u‖L2(Br)

)
≤ C2(d,Λ,M) + C3(R)N(R).

This remark will be useful later on.

Proof of Lemma 2.3. We have first,

(2.4) H(r) = r−d
∫
|x|<r

div
(
|u(x)|2A(x)x

)
dx.
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This is a consequence of the divergence Theorem. Indeed the unit exterior normal to the ball
beeing x

|x| the integral of the right hand side is equal to,∫
|x|=r

|u(x)|2〈A(x)x,
x

|x|
〉 dσr = r

∫
|x|=r

|u(x)|2 〈A(x)x, x〉
|x|2

dσr = rdH(r).

Let us compute the derivative of H. Using (2.4) we have,

H(r) = r−d
∫ r

0

∫
|x|=t

div
(
|u(x)|2A(x)x

)
dt dσt,

therefore,

H ′(r) = −dr−d−1

∫
|x|<r

div
(
|u(x)|2A(x)x

)
dx+ r−d

∫
|x|=r

div
(
|u(x)|2A(x)x

)
dσr,

that means,

(2.5) H ′(r) = −dr−1H(r) + r−d
∫
|x|=r

div
(
|u(x)|2A(x)x

)
dσr.

Consider the integral in the right hand side. We have,

(1) = div
(
|u(x)|2A(x)x

)
=

d∑
j=1

∂j
(
|u(x)|2

d∑
k=1

ajk(x)xk
)
,

=
d∑
j=1

(
2u(x)∂ju(x)

(
A(x)x

)
j

+ |u(x)|2
d∑

k=1

(∂jajk(x))xk + |u(x)|2ajj(x
)
,

= 2u(x)〈A(x)x,∇u(x)〉+ |u(x)|2AD(x) + |u(x)|2TrA(x),

where AD(x) =
∑d

j,k=1(∂jajk(x))xk. We have,

AD(x) = O(|x|), TrA(x) = d+O(|x|) = dµ(x) +O(|x|).

It follows that,∫
|x|=r

div
(
|u(x)|2A(x)x

)
dx = 2

∫
|x|=r

u(x)〈A(x)x,∇u(x)〉 dσr + d

∫
|x|=r

µ(x)|u(x)|2 dx

+O
(
r

∫
|x|=r

µ(x)|u(x)|2 dx
)
.

Therefore,
(2.6)∫
|x|=r

div
(
|u(x)|2A(x)x

)
dx = 2

∫
|x|=r

u(x)〈A(x)x,∇u(x)〉 dσr + drd−1H(r) +O(rdH(r)).

3



Since A(x) is symmetric we have,∫
|x|=r

u(x)〈A(x)x,∇u(x)〉 dσr =

∫
|x|=r

u(x)〈A(x)∇u(x), x〉 dσr,

= r

∫
|x|=r

u(x)〈A(x)∇u(x),
x

|x|
〉 dσr = r

∫
|x|<r

div
(
u(x)A(x)∇u(x)

)
dx,

= r

∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx+ r

∫
|x|<r

u(x)div
(
A(x)∇u(x)

)
dx,

= r

∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx,

since Lu = 0. Therefore,

(2.7)

∫
|x|=r

u(x)〈A(x)x,∇u(x)〉 dσr = r

∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx.

It follows from (2.6) that,∫
|x|=r

div
(
|u(x)|2A(x)x

)
dx = 2r

∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx+ drd−1H(r) +O(rdH(r)).

We deduce from (2.5) that,

H ′(r) = −dr−1H(r) + 2r1−d
∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx+ dr−1H(r) +O(H(r)),

= 2r1−d
∫
|x|<r
〈A(x)∇u(x),∇u(x)〉 dx+O(H(r)).

According to the definition of I(r) en (2.2) we see that (i) is proved. Notice that from (2.7)
we have,

(2.8) I(r) = r−d
∫
|x|=r

u(x)〈A(x)x,∇u(x)〉 dσr.

By (i) we have rI(r) = 1
2rH

′(r) +O(rH(r)). therefore,

(2.9) N(r) =
rH ′(r)

2H(r)
+O(r), N ′(r) =

(rI(r))′

H(r)
− rI(r)H ′(r)

H(r)2
.

Let us show (ii). We compute (rI(r))′. From (2.2) we have,

rI(r) = r2−d
∫ r

0

∫
|x|=t
〈A(x)∇u(x),∇u(x)〉dσt dt

so,

(2.10) (rI(r))′ = (2− d)I(r) + r2−d
∫
|x|=r
〈A(x)∇u(x),∇u(x)〉 dσr

Let w be a vector field such that 〈w, x〉 = r2 on |x| = r. Then,

r1−d
∫
|x|<r

div(w(x)〈A(x)∇u(x),∇u(x)〉) dx = r1−d
∫
|x|=r
〈A(x)∇u(x),∇u(x)〉〈w, ν〉 dσr.
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Since ν = x
|x| we have 〈w, ν〉 = r so,

r1−d
∫
|x|<r

div(w(x)〈A(x)∇u(x),∇u(x)〉) dx = r2−d
∫
|x|=r
〈A(x)∇u(x),∇u(x)〉 dσr.

It follows that,

(rI(r))′ = (2− d)I(r) + r1−d
∫
|x|<r

div(w(x)〈A(x)∇u(x),∇u(x)〉) dx.

Therefore,

(2.11)

(rI(r))′ = (2− d)I(r) + (1) + (2),

(1) = r1−d
∫
|x|<r

U(x) dx, U(x) = div(w)(x)〈A(x)∇u(x),∇u(x)〉),

(2) = r1−d
∫
|x|<r

V (x) dx, V (x) = w(x) · ∇〈A(x)∇u(x),∇u(x)〉).

Let us compute the term V (x). We can write,

V (x) =

d∑
j=1

wj(x)

d∑
p,q=1

∂japq(x)∂pu(x)∂qu(x) + 2

d∑
j=1

wj(x)

d∑
p,q=1

apq(x)∂j∂pu(x)∂qu(x)

= V1(x) + V2(x).

We have,

(2.12) V1(x) = 〈ADw(x)∇u(x),∇u(x)〉, ADw =
( d∑
j=1

wj∂japq
)

1≤p,q≤d.

Now A∇u =
(∑d

q=1 apq∂pu
)

1≤p≤d, Hess(u) =
(
∂p∂qu

)
1≤p,q≤d so,

(
Hess(u)A∇u

)
j

=
d∑
p=1

∂j∂pu
d∑
q=1

apq∂qu =
d∑

p,q=1

apq∂j∂pu∂qu.

It follows that,

V2(x) = 2〈w(x),Hess(u)(x)A(x)∇u(x)〉 = 2〈Hess(u)(x)w(x), A(x)∇u(x)〉.
We are going to simplify the term V2. We have,

〈∇〈∇u,w〉, A∇u〉 =
d∑
j=1

∂j
( d∑
k=1

wk∂ku
)(
A∇u

)
j

=
d∑

j,k=1

∂jwk∂ku
(
A∇u

)
j

+
d∑

j,k=1

wk∂j∂ku
(
A∇u

)
j

= 〈〈Dw,∇u〉, A∇u〉+ 〈Hess(u)w,A∇u〉,
so,

V2(x) = 2〈∇〈∇u,w〉, A∇u〉 − 2〈〈Dw,∇u〉, A∇u〉.
Then,

div
(
〈∇u,w〉A∇u

)
= 〈∇〈∇u,w〉, A∇u〉+ 〈∇u,w〉div

(
A∇u

)
= 〈∇〈∇u,w〉, A∇u〉,
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since Lu = 0. It follows that,

V2(x) = 2div
(
〈∇u,w〉A∇u

)
− 2〈〈Dw,∇u〉, A∇u〉.

Now from the Gauss-Green formula, since ν = x
|x| , we have,

(2.13)

∫
|x|<r

V2(x) dx = 2r−1

∫
|x|=r
〈∇u,w〉〈A∇u, x〉 dσr − 2

∫
|x|<r
〈〈Dw,∇u〉, A∇u〉.

It follows from (2.11), (2.12), (2.13) that,

(2) = r1−d
∫
|x|<r
〈ADw(x)∇u(x),∇u(x)〉 dx− 2r1−d

∫
|x|<r
〈〈Dw,∇u〉, A∇u〉

+ 2r−d
∫
|x|=r
〈∇u,w〉〈A∇u, x〉 dσr,

so,

(rI(r))′ = (2− d)I(r) + r1−d
∫
|x|<r

div(w)(x)〈A(x)∇u(x),∇u(x)〉)

+ r1−d
∫
|x|<r
〈ADw(x)∇u(x),∇u(x)〉 dx− 2r1−d

∫
|x|<r
〈〈Dw(x),∇u(x)〉, A(x)∇u(x)〉

+ 2r−d
∫
|x|=r
〈∇u(x), w(x)〉〈A(x)∇u(x), x〉 dσr = (2− d)I(r) +

4∑
k=1

Jk.

We take w(x) = µ(x)−1A(x)x. It satisfies,

w(x) = O(|x|) et 〈w(x), x〉 =
|x|2

〈A(x)x, x〉
〈A(x)x, x〉 = |x|2 = r2, if |x| = r.

We have A(x) = Id+O(|x|) so A(x)x = x+O(|x|2), 〈A(x)x, x〉 = |x|2 +O(|x|3), so, w(x) =
|x|2

|x|2+O(|x|3)
(x+O(|x|2)) = x+O(|x|2). Then,

Dw(x) = Id+O(|x|), divw(x) = d+O(|x|), ADw = O(|x|),
〈∇u(x), w(x)〉 = µ(x)−1〈A(x)∇u(x), x〉.

Therefore,

J1 = dr1−d
∫
|x|<r
〈A(x)∇u(x),∇u(x)〉) dx+ r1−d

∫
|x|<r

O(|x|)〈A(x)∇u(x),∇u(x)〉) dx,

J2 ≤ Cr2−d
∫
|x|<r

|∇u(x)|2 dx,

J3 = −2r1−d
∫
|x|<r
〈∇u(x), A(x)∇u(x)〉+ r1−d

∫
|x|<r
〈O(|x|)∇u(x), A(x)∇u(x)〉,

J4 = 2r−d
∫
|x|=r

µ(x)−1
(
〈A(x)∇u(x), x〉

)2
dσr.
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According to (2.2) we have,

J1 = dI(r) +O(I(r)), J2 = O(rI(r)), J3 = −2I(r) +O(rI(r)),

J4 = 2r−d
∫
|x|=r

(
〈A(x)∇u(x), x〉

)2
dσr.

It follows that,

(rI(r))′ = (2− d)I(r) + (d− 2)I(r) + 2r−d
∫
|x|=r

(
〈A(x)∇u(x), x〉

)2
dσr +O(rI(r)),

so,

(2.14) (rI(r))′ = 2r−d
∫
|x|=r

(
〈A(x)∇u(x), x〉

)2
dσr +O(rI(r)).

Recall that,

N(r) =
rI(r)

H(r)
, N ′(r) =

(rI(r))′

H(r)
− rI(r)H ′(r)

H(r)2
, H ′(r) = 2I(r) +O(H(r)).

Then,

N ′(r)

N(r)
=

(rI(r))′

rI(r)
− H ′(r)

H(r)
=

1

rI(r)H(r)

(
(rI(r))′H(r)− rI(r)H ′(r)

)
,

=
1

rI(r)H(r)

(
(rI(r))′H(r)− 2r

(
I(r)

)2
+O(rI(r)H(r)

)
,

=
1

rI(r)H(r)

(
(rI(r))′H(r)− 2r

(
I(r)

)2)
+O(1).

Now from (2.8), (2.14) and the Hölder inequality we have,

2rI(r)2 ≤ 2r1−2d
(∫
|x|=r

µ(x)|u(x)|2 dσr
)(∫

|x|=r
µ(x)−1〈A(x)x,∇u(x)〉2 dσr

)
,

≤ (rI(r))′H(r) +O(rI(r)H(r)).

We deduce eventually that,
N ′(r)

N(r)
≥ O(1),

in other words, there exists C > 0 such that N ′(r)
N(r) ≥ −C. Then, d

dr

(
eCrN(r)

)
≥ 0, which

proves (ii) in Lemma 2.3.
�

3. The three-sphere theorem for elliptic operators.

Theorem 3.1. Let L = div(A∇) where A is a uniformly elliptic symmetric matrix with
Lipschitz entries in a domain Ω ⊂ Rd. We assume that B(0, 4R) ⊂ Ω and A(0) = Id. Then,
for every r < R there exists α ∈ (0, 1), C > 0 such that for every smooth solution of Lu = 0
in Ω we have,∫

|x|=2r
|u(x)|2 dσ2r ≤ C

(∫
|x|=r

|u(x)|2 dσr
)α(∫

|x|=4r
|u(x)|2 dσ4r

)1−α
.
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Proof. By Lemma 2.3 we have eCrN(r) ≤ e2CrN(2r) that is, N(r) ≤ eCrN(2r) and N(r) =
rH′(r)
2H(r) +O(1). Combining these two facts we get,

rH ′(r)

2H(r)
≤ eCr

(2rH ′(2r)

2H(2r)
+K

)
so, ∫ 2r

r

H ′(ρ)

H(ρ)
dρ ≤

∫ 2r

r
eCρ

2H ′(2ρ)

H(2ρ)
dρ+ 2K

∫ 2r

r

eCρ

ρ
dρ,

≤ e2Cr
(∫ 2r

r

2H ′(2ρ)

H(2ρ)
dρ+K ′ + 2K

∫ 2r

r

dρ

ρ

)
since by Lemma 2.3 and the fact that N(r) ≥ 0 there exists K0 > 0 such that H′(r)

H(r) +K0 ≥ 0.

It suffices to add (then substract) 2K0 in the integral to obtain a positive quantity.
Performing the integrations we get,

LogH(2r)− LogH(r) ≤ e2Cr
(
LogH(4r)− LogH(2r) + 2(Log2)K),

so,
(1 + e2Cr)LogH(2r) ≤ LogH(r) + e2CrLogH(4r) +K ′′e2Cr,

which can be written, with α(r) = 1
1+e2Cr

,

LogH(2r) ≤ Log(H(r))α + Log(H(4r))1−α +K ′′(1− α).

Taking the exponential of both members, using the definition of H(ρ) and the fact that
Λ−1 ≤ µ(x) ≤ Λ we obtain the theorem. �

Corollary 3.2. Under the hypotheses of Theorem 3.1, for all r < R there exists α ∈ (0, 1)
and C > 0 such that for any smooth solutions of Lu = 0 in Ω we have,

sup
B2r

|u| ≤ C
(

sup
Br

|u|)α(sup
B8r

|u|)1−α.

Proof. By Corollary 6.8 we have,

(1) := ( sup
|x|<2r

|u|)2 ≤ C1r
−d
∫
|x|<4r

|u|2 dx ≤ C1r
−d
∫ 4r

0

∫
|x|=ρ

|u|2 dσρ dρ,

≤ C2r
−d
∫ r

0

∫
|x|=4ρ

|u|2 dσ4ρ dρ

Set,

s(ρ) =

∫
|x|=ρ

|u|2 dσρ, m(t) = (sup
|x|<t
|u|)2

Using Theorem 3.1 with 2ρ then with ρ we get,

m(2r) ≤ C3r
−d
∫ r

0
s(2ρ)α(2ρ)s(8ρ)1−α(2ρ) dρ,

≤ C4r
−d
∫ r

0

[
s(ρ)α(ρ)s(4ρ)1−α(ρ)

]α(2ρ)
s(8ρ)1−α(2ρ)dρ.

By the maximum principle we can write,

s(t) ≤ C5t
d−1( sup

|x|=t
|u|)2 ≤ C5t

d−1( sup
|x|<t
|u|)2 = C5t

d−1m(t)
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so setting α1(ρ) = α(ρ)α(2ρ) and bounding m(4ρ) by m(8ρ), we obtain,

m(2r) ≤ C6r
−d
∫ r

0
ρd−1m(ρ)α1(ρ)m(8ρ)1−α1(ρ) dρ.

Since α(ρ) = 1
1+e2Cρ

the function α1 est decreasing. So α1(r) ≤ α1(ρ) and since m(ρ) ≤ m(8ρ)
we get, ( m(ρ)

m(8ρ)

)α1(ρ)
≤
( m(ρ)

m(8ρ)

)α1(r)
.

It follows that,

m(2r) ≤ C6r
−d
∫ r

0
ρd−1m(ρ)α1(r)m(8ρ)1−α1(r) dρ,

≤ C6r
−d
(∫ r

0
ρd−1 dρ

)
m(r)α1(r)m(8r)1−α1(r) ≤ C7m(r)α1(r)m(8r)1−α1(r).

�

Corollary 3.3. There exist r0 > 0, k large enough, C > 0, α ∈ (0, 1) such that if B = Br is
a ball with r < R0 and Bkr = kBr ⊂ Ω we have,

sup
B2r

|u| ≤ C
(

sup
Br

|u|)α(sup
Bkr

|u|)1−α.

Corollary 3.4. Let B ⊂ K ⊂ Ω′ ⊂ Ω where B,Ω′ are open, K is compact and Ω′ ⊂ Ω.
There exists α ∈ (0, 1), C > 0 depending only on B,K,Ω′, L, d such that for any continuous
solution u in Ω of Lu = 0 we have,

sup
K
|u| ≤ C

(
sup
B
|u|
)α(

sup
Ω′
|u|
)1−α

.

Proof. Assume supΩ′ |u| = 1. Fix a point m0 ∈ B. For any x ∈ K there is a curve connecting
x to m0. Then there exists a finite sequence of balls (Bj)

J
j=1 with radius < r0 such that

B1 ⊂ B, Bj+1 ⊂ 2Bj , kBj ⊂ Ω′ and x ∈ BJ = B(x). Applying Corollary 3.3 we see that,

sup
Bj+1

|u| ≤ sup
2Bj

|u| ≤ C
(

sup
Bj

|u|
)α
.

Iterating this estimate we obtain,

sup
BJ

|u| ≤ CJ
(

sup
B
|u|
)αJ

, αJ ∈ (0, 1).

Eventually we use the fact that K can be covered by a finite number of ball B(x). �

4. The doubling index

Let u ∈ C0(Ω) be such that it does not vanish identically on any open subset of Ω. For any
open ball B such that 2B (the closed ball of same center and double radius) is contained in
Ω we set,

(4.1) Nu(B) = Log
(sup2B |u|

supB |u|

)
.
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Example 4.1. Assume that P is a homogeneous polynomial of degree n and that B =
B(0, R). We have sup2B |P | = sup|x|≤2R(|x|n

∑
|α|=n aαω

α) = (2R)ncn(ω) and supB |P | =

Rncn(ω) so, NP (B) = Log 2n = nLog 2.
Let us compute the frequency function N(r) of an harmonic polynomial. In that case we

have µ(x) = 1 and H(r) = r1−d ∫
|x|=r |P (x)|2 dσr. On the other hand, by (2.8),

I(r) = r−d
∫
|x|=r

P (x)x · ∇P dσr = nr−d
∫
|x|=r

|P (x)|2 dσr

since, P beeing homogeneous of degree n, the Euler relation shows that, x · ∇P = nP. Then,

N(r) = rI(r)
H(r) = n.

In the general case we have we have the following result.

Lemma 4.2. Let Br = {x : |x| < r} and let u be a continuous bounded solution of Lu = 0 in
BR.

(i) There exists C1 > 0 such that , Nu(Br) ≤ C
(
N(R) + 1

)
, if 4r ≤ R.

(ii) There exists C2 > 0 such that, N(r) ≤ C2

(
Nu(Br) + 1

)
.

(iii)There exists C3 > 0 such that, Nu(Br) ≤ C3(Nu(BR) + 1), if 4r ≤ R.

Proof. (i) There exists (see Corollary 6.8) C ≥ 1 depending only on d,Λ such that,

(4.2) C−1t−
d
2 ‖v‖L2(Bt) ≤ ‖v‖L∞(Bt) ≤ Ct

− d
2 ‖v‖L2(B2t).

Applying these inequalities with t = 2r and t = r we obtain,

Log
(‖u‖L∞(B2r)

‖u‖L∞(Br)

)
≤ Log

(
C0

‖u‖L2(B4r)

‖u‖L2(Br)

)
= Log

(‖u‖L2(B4r)

‖u‖L2(B2r)

)
+ Log

(‖u‖L2(B2r)

‖u‖L2(Br)

)
+ C1

From the inequality (2.3) we have,

(4.3)

∫
|x|<2t

|u(x)|2 dx ≤ C2e
C2N(T )

∫
|x|<t
|u(x)|2 dx,

where 2t ≤ T and C2 depends only on d,Λ and the Lipschitz constants of A. Apply this
inequality with t = 2r, t = r and T = R. We get,

Log
(‖u‖L2(B4r)

‖u‖L2(B2r)

)
+ Log

(‖u‖L2(B2r)

‖u‖L2(Br)

)
≤ C3N(R) + C4.

Nu(Br) = Log
(‖u‖L∞(B2r)

‖u‖L∞(Br)

)
≤ C4N(R) + C5,

which proves (i).
(ii) We use (i) in Lemma 2.3, that is,

N(r) =
rH ′(r)

2H(r)
+O(r)⇐⇒ 2

r
N(r) =

H ′(r)

H(r)
+O(1).

We integrate this inequality between 3
2r and 2r where 0 < r < R0. We get,∫ 2r

3
2
r

2

ρ
N(ρ)dρ ≤ Log

H(2r)

H(3
2r)

+ Cr.

10



We use (see Lemma 2.3) the fact that the function ρ 7→ eCρN(ρ) is non decreasing so,

N(ρ) ≥ eC(r−ρ)N(r) ≥ e−CR0N(r). We deduce that,

(4.4) 2(Log2)e−CR0N(r) ≤ Log
H(2r)

H(3
2r)

+ CR0.

Then we can write,

(4.5) H(2r) ≤ C( sup
|x|=2r

|u|)2 ≤ C( sup
|x|<2r

|u|)2.

On the other hand, by Theorem 6.5 we have for ρ > 0,

‖u‖2L∞(Bρ) ≤ C1ρ
−d
∫
B 3

2 ρ

|u|2 dx = C1ρ
−d
∫ 3

2
ρ

0
td−1t1−d

∫
|x|=t
|u(x)|2 dσt dt

≤ C2 sup
0<t< 3

2
ρ

H(t).

Now from (i) in Lemma 2.3 we have H′

H ≥ −C so the function t 7→ eCtH(t) is non decreasing.
We deduce that,

‖u‖2L∞(Br)
≤ C3e

C′rH(
3

2
r),

so,

(4.6)
1

H(3
2r)
≤ C4e

C′r

‖u‖2L∞(Br)

.

Using (4.5) we obtain,

H(2r)

H(3
2r)
≤ C5e

C′r
‖u‖2L∞(B2r)

‖u‖2L∞(Br)

.

It follows that for r ≤ R0,

Log
H(2r)

H(3
2r)
≤ C6 + C7R0 +Nu(Br).

We have just to use (4.4) to conclude.
(iii) Indeed from (i) we have Nu(Br) ≤ C(N(R) + 1) when 4r ≤ R and from (ii) we have

N(R) ≤ C
(
Nu(BR) + 1). �

4.1. Doubling index of the eigenfunctions. Let φλ be an eigenfunction of −∆g that is,

−∆gφλ = λφλ, λ ≥ 0. Then h(t, x) = et
√
λφλ is a solution of (∂2

t +∆g)h = 0 and we can apply
the previous results. We obtain a three-sphere inequality and a notion of doubling index. This
has been used by Donnelly-Fefferman in their study of the nodal sets of the eigenfunctions.
A result they used is the following.

Theorem 4.3. Let (M, g) be a smooth compact Riemannian manifold without boundary.
There exists r0, C > 0 depending on M such that for any eigenfunction of −∆g corresponding
to the eigenvalue λ we have,

Nφλ(Br) ≤ C(1 +
√
λ).

This result suggests that the eigenfunctions of −∆g corresponding to the eigenvalue λ

behave like polynomials of degree
√
λ.

11



Proof. Set u(t, x) = et
√
λφλ. Then u solves the equation (∂2

t + ∆g)u = 0 on R ×M and we
may apply the previous results to u. We may assume that e supM |φλ| = |φλ(x)| = 1. let
r > 0 be so small that for all x ∈ M the geodesic ball of center x and radius r is contained

in a chart. Let k ∈ N, k ≥ 3. Let B be a ball of radius r
2k in M and B̃ = (− r

2k ,
r

2k )×B. We

choose a finite family of geodesic balls (B̃j)
J
j=1 centered at (0, xj) in R ×M of equal radius

r
2k such that,

B̃1 = B̃, B̃j+1 ⊂ 2B̃j , (0, x) ∈ B̃J .
We apply Corollary 3.2. We get,

sup
B̃j+1

|u| ≤ sup
2B̃j

|u| ≤ C
(

sup
B̃j

|u|
)β(

sup
kB̃j

|u|
)1−β

.

Since B̃j = (− r
2k ,

r
2k )× Bj we have, sup

B̃j
|u| = e

r
2k

√
λ supBj |φλ|, sup

kB̃j
|u| ≤ e

r
2

√
λ, since,

supkBj |φλ| ≤ supM |φλ| = 1. We deduce that,

sup
Bj

|φλ| ≥ C1e
−m
√
λ
(

sup
Bj+1

|φλ|
) 1
β ,

where m = 1−β
β

(
r
2 −

r
2k

)
. Therefore for all j ≥ 2,

sup
B1

|φλ| ≥ Ckje−mj
√
λ
(

sup
Bj

|φλ|
) 1

βj ,

where kj =
∑j−2

`=0
1
β`
, mj = m

∑j−2
`=0

1
β`
. Taking j = J and using the fact that supBJ |φλ| = 1

since x ∈ BJ we obtain,

sup
B
|φλ| ≥ CkJ e−mJ

√
λ.

Let now Br be a ball of radius r which contains B and such that B2r is contained in a chart.
We have,

sup
Br

|φλ| ≥ CkJ e−mJ
√
λ

so,

supB2r
|φλ|

supBr |φλ|
≤ supM |φλ|

supBr |φλ|
≤ 1

supBr |φλ|
≤ C−kJ emJ

√
λ,

and,

Nφλ(Br) = Log
(sup2B2r

|φλ|
supBr |φλ|

)
≤ C(1 +

√
λ).

�

4.2. The doubling index on cubes. If Q is a cube in Rd of length side s(Q) we shall
denote by λQ, for λ > 0, the cube of same center and length side λs(Q).

We define the doubling index Nu(Q) as follows,

Nu(Q) = sup
q⊂Q

Nu(q), Nu(q) = Log
(sup2q |u|

supq |u|

)
.
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Proposition 4.4. There exist positive constants a1, a2 depending only on Λ and on the Lips-
chitz constants of A such that for any cube Q ⊂ Rd with s(Q) ≤ 1 and any bounded continuous
solution u of Lu = 0 in 2Q we have,

Nu(Q) ≤ Nu(Q) ≤ a1Nu(Q) + a2.

Proof. The left inequality is trivial. Let us prove the right one. Let q be a cube, q ⊂ Q =
{x : |xj − aj | ≤ 1

2s(Q)} where s(Q) denotes the length of a side of Q.
Cas 1. s(q) ≤ cds(Q), cd << 1.

Let b = b(x0, 1
2s(q)) the biggest ball inscribed in q. Then, 2q ⊂ kdb where kd =

√
2d. Let

B = B(x0, 1
4s(Q)). We have 2B ⊂ 2Q because if x ∈ 2B we have,

|xj − aj | ≤ |xj − x0
j |+ |x0

j − aj | ≤
1

2
s(Q) +

1

2
s(Q) = s(Q).

Now let m = x0 + µ(a− x0), µ = 1
2(1+

√
d)

and B0 = {x : |x−m| ≤ 1
2µs(Q)}. Then B0 ⊂ Q et

B0 ⊂ B. Indeed if x ∈ B0 we have,

|xj−aj | = |xj−mj+mj−aj | ≤ |xj−mj |+(1−µ)|x0
j−aj | ≤

1

2
µs(Q)+(1−µ)

1

2
s(Q) =

1

2
s(Q).

On the other hand,

|x− x0| ≤ |x−m|+ µ|a− x0| ≤ 1

2
µs(Q) + µ

√
d

1

2
s(Q) =

1

2
µ(1 +

√
d)s(Q) =

1

4
s(Q).

Let ` ∈ N be such that 2` ≤ kd < 2`+1. We write,

sup2q |u|
supq |u|

≤
supkdb |u|
supb |u|

=
∏̀
j=1

sup 1

2j−1 kdb
|u|

sup 1

2j
kdb
|u|
×

sup 1

2`
kdb
|u|

supb |u|
,

≤
∏̀
j=1

sup 1

2j−1 kdb
|u|

sup 1

2j
kdb
|u|
× sup2b |u|

supb |u|
.

It follows that,

Log
(sup2q |u|

supq |u|

)
≤
∑̀
j=1

Nu(
1

2j−1
kdb) +Nu(b).

Since s(q) << s(Q) we deduce from (iii) in Lemma 4.2 that,

(4.7) Log
(sup2q |u|

supq |u|

)
≤ Cd(Nu(B) + 1).

Now since the radius of B0 is uniformly equivalent to s(Q) by Corollary 3.4 there exist
constants A, γ ∈ (0, 1) depending only on the dimension such that,

supQ|u| ≤ A
(

supB0
|u|
)γ(

sup2Q|u|
)1−γ

.

It follows that,

Log
(sup2Q |u|

supQ |u|

)
≥ A1Log

(sup2Q |u|
supB0

|u|

)
−A2 ≥ A1Log

(sup2B |u|
supB |u|

)
−A2 = A1Nu(B)−A2

13



since 2B ⊂ 2Q and B0 ⊂ B. Using (4.7) we obtain,

Nu(Q) = sup
q⊂Q

Log
(sup2q |u|

supq |u|

)
≤ a1Log

(sup2Q |u|
sup2Q |u|

)
+ a2

where aj depend only on d.
Cas 2. s(q) ≥ cds(Q).
In that case we can use the three-sets theorem with q ⊂ Q ⊂ 2Q and we obtain with

constants depending only on the dimension (when s(Q) ≤ 1),

sup
Q
|u| ≤ C

(
sup
q
|u|
)γ(

sup
2Q
|u|
)1−γ

,

which imply that,
sup2Q |u|
supQ |u|

≥ 1

C

(sup2Q |u|
supq |u|

)γ
≥ 1

C

(sup2q |u|
supq |u|

)γ
,

so,

Nu(Q) = sup
q⊂Q

Log
(sup2q |u|

supq |u|

)
≤ a1Log

(sup2Q |u|
sup2Q |u|

)
+ a2.

�

4.2.1. A lemma on cubes.

Lemma 4.5. Let Q be a cube. We partition it into Kd equal cubes. Let q be one of the cubes
of the partition. Then,

(i) Q ⊂ 2Kq ⊂ 3Q, Kq ⊂ 2Q,

(ii) If q ∩
(1

2
+

3m

K

)
Q 6= ∅, then 2q ⊂

(1

2
+

3m+ 1

K

)
Q, ∀m ∈ N,

(iii) If q ∩ 1

2
Q 6= ∅, then

1

3
Kq ⊂ Q.

Proof. See the appendix. �

5. Propagation of smallness for solutions of elliptic equations.

Let L = div(A∇) be a uniformly elliptic operator with Lipschitz coefficients in Ω ⊂ Rd.
We know that a solution of the equation Lh = 0 which vanishes on a set of positive measure
vanishes identically. The purpose of this section is give a quantitative version of this result.

Theorem 5.1. Let h be a bounded continuous solution of Lh = 0 in Ω. Let E ⊂ Ω be
measurable with strictly positive measure. Assume that |h| ≤ ε on E. Let K ⊂ Ω be a compact
subset. Then there exists α ∈ (0, 1), C > 0 depending only on A, |E|, dist(E, ∂Ω),K, d such
that,

(5.1) sup
K
|h| ≤ C(sup

E
|h|)α

(
sup

Ω
|h|
)1−α

.

The rest of this section is devoted to the proof of this result.
We begin by proving this theorem with K = Q where Q is the unit cube, Ω = 2Q and the

equation holds in 3Q, that is,

(5.2) sup
Q
|h| ≤ C(sup

E
|h|)α

(
sup
2Q
|h|
)1−α

.
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Remark 5.2. We notice that in the above theorem one may assume that supK |h| ≥ 2 supE |h|
otherwise (5.1) is trivial.

Indeed assume that supK |h| ≤ 2 supE |h|. Then,

sup
K
|h| ≤ 2 sup

E
|h| = 2(sup

E
|h|)α(sup

E
|h|)1−α ≤ 2(sup

E
|h|)α(sup

Ω
|h|)1−α

for every α ∈ (0, 1).

5.0.1. Preliminaries. We first prove that the solutions h for which supE |h| ≤ 1
2 supQ |h| have

a doubling index N = Nu(Q) bounded below. For this we shall use Corollary 6.13.

Lemma 5.3. Let M = supQ |h|. Assume that supE |h| ≤ 1
2M. Let `0 ≥ 2 and K0 = 2`0−1 ≥ 1

be such that τ( 1
K0

) ≤ 1
24 . Then, N ≥

1
`0
Log
(

4
3

)
:= n0.

Proof. Let `0 ≥ 2,K0 = 2`0−1 be such that 6τ( 1
K0

) ≤ 1
4 . Then we shall prove that, N =

Nh(Q) ≥ 1
`0

Log4
3 .

If N ≥ 1 we are done since, 1 ≥ 1
`0

Log4
3 . Assume N ≤ 1.

Recall that N = Nh(Q) = supq⊂Q Log
(

sup2q |u|
supq |u|

)
. Cut Q into Kd

0 equal cubes and let q be

one of them. By Lemma 4.5 we have,

(5.3) Q ⊂ 2K0q = 2`0q ⊂ 3Q, K0q ⊂ 2Q.

Then, using (5.3) and iterating we obtain,

(5.4) M = sup
Q
|h| ≤ sup

2`0q

|h| ≤ eN`0 sup
q
|h|, sup

2Q
|h| ≤ eN sup

Q
|h| ≤ 3M.

By Corollary 6.13 with s = 1
K0
, and the fact that osc2Qh ≤ 2 sup2Q |h| ≤ 6M,

(5.5) oscqu = osc 1
K0

K0q
h ≤ τ(

1

K0
)oscK0qh ≤ τ(

1

K0
)osc2Qh ≤ 6Mτ(

1

K0
) ≤ M

4
.

We may assume that supq h = u(x0) > 0. Assume that N < 1
`0

Log
(

4
3

)
, then e−N`0 > 3

4 .

Therefore, since M ≥ 2 supE |h|, for every cube q we have,

inf
q
h = sup

q
h− oscqh ≥

(
e−N`0 − 1

4

)
M >

1

2
M ≥ sup

E
|h|.

This is a contradiction Therefore N ≥ 1
`0

Log
(

4
3

)
. �

5.1. Remez inequalities for solutions of elliptic equations.

5.1.1. Introduction. Initially the Remez inequalities concerned polynomials. The question
was the following. If Pn is a polynomial of degree n and if we know that,

|{x ∈ [−1, 1] : |Pn(x)| ≤ 1}| ≥ 2− s, 0 < s < 2,

(where | · | is the Lebesgue measure) can we have an estimate of the size of Pn on [−1, 1] ?
This was answered by Remez as follows. Under these hypotheses we have,

(5.6) sup
[−1,1]

|Pn| ≤ Tn
(2 + s

2− s

)
where Tn is the Tchebycheff polynomial of degree n and we have equality if and only if

Pn = ±Tn
(
±2x+s

2−s

)
.
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Here is a consequence of this result. Let E be a measurable subset of [−1, 1] then,

(5.7) sup
[−1,1]

|Pn| ≤
( 8

|E|

)n
sup
E
|Pn|.

The proof is the following. Take s = 2− |E| ∈ (0, 2) and set P̃n = Pn
supE |Pn|

. Then,

E ⊂ {x ∈ [−1, 1] : |P̃n(x)| ≤ 1}.
Therefore,

|{x ∈ [−1, 1] : |P̃n(x)| ≤ 1}| ≥ |E| = 2− s.

We may apply the inequality (5.6) and deduce that,

sup
[−1,1]

|P̃n| ≤ Tn
(4− |E|
|E|

)
.

Now for x > 0 large enough we have, Tn(2x − 1) ≤ (4x)n and 2x − 1 = 4−|E|
|E| ⇐⇒ x = 2

|E| .

Therefore if |E| is small enough we obtain (5.7).
According to the analogy made previously between polynomials of degree n and solutions of

elliptic equations with doubling index N, A. Logunov and E. Malinnikova prove the following.

Theorem 5.4. Let Q be the unit cube in Rd and let h be a bounded continuous solution of
Lh = 0 in 2Q. Set N = Nh(Q) the doubling index and assume that N ≥ n0. Then for every
measurable set E ⊂ Q with strictly positive measure |E|, we have,

(5.8) sup
Q
|h| ≤ C sup

E
|h|
(
C
|Q|
|E|

)CN
,

where C depends only on d and A.

5.1.2. Theorem 5.4 implies Theorem 5.1. We have seen that,

Log
sup2Q |h|
supQ |h|

≥ a1Nh(Q)− a2, aj > 0.

We deduce that,

(5.9) ea1N ≤ ea2
sup2Q |h|
supQ |h|

.

Assume (5.8) true. Choose C1 = C1(|E|) such that
(
C |Q||E|

)C
= ea1C1 that is C1 = a−1

1 C Log (C|Q||E|−1).

Using (6.14) we obtain,

sup
Q
|h| ≤ Cea1C1N sup

E
|h| ≤ Cea2C1 sup

E
|h|
(

sup
2Q
|h|
)C1
(

sup
Q
|h|
)−C1

so, (
sup
Q
|h|
)1+C1 ≤ C2 sup

E
|h|
(

sup
2Q
|h|
)C1

and eventually,

sup
Q
|h| ≤ C3

(
sup
E
|h|
) 1

1+C1

(
sup
2Q
|h|
) C1

1+C1 ,

which proves Theorem 5.1 with α = 1
1+C1

in the case where K = Q,Ω = 2Q. The general
case can be proved as in Corollary 3.4.

Here is an equivalent version of Theorem 5.4.
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Theorem 5.5. Let Q be the unit cube in Rd and let h be a bounded continuous solution of
Lh = 0 in 2Q such that supQ |h| = 1. Set N = Nh(Q) ≥ n0 and,

Ea(h) = {x ∈ Q : |h(x)| ≤ e−a}, a > 0.

Then there exists β > 0, C > 0 depending only on A, d such that,

(5.10) |Ea(h)| ≤ Ce−
βa
N |Q|,

Let us show the equivalence of these two theorems.
(i) Theorem 5.4 implies Theorem 5.5.

By Theorem 5.4 we have 1 ≤ C supE |h|
(
C |Q||E|

)CN
. Take E = Ea(h), then supE |h| ≤ e−a so

that,
(
|Ea(h)|
C|Q|

)CN
≤ Ce−a or, |Ea(h)| ≤ C|Q|

(
Ce−a

) 1
CN . Since N ≥ n0 we have C

1
CN ≤ C

1
Cn0

so, |Ea(h)| ≤ C ′|Q|e−
βa
N , β = 1

C .
(ii) Theorem 5.5 implies Theorem 5.4.
Let |E| > 0. We have, supE |h| ≤ supQ |h| = 1. If supE |h| = supQ |h| the inequality (5.8) is

satisfied as soon as C ≥ 1. If supE |h| < supQ |h| there exists a > 0 such that supE |h| = e−a.

Then E ⊂ Ea(h) and |E| ≤ |Ea(h)| ≤ Ce−
βa
N |Q| so, 1 ≤ C |Q||E|e

−βa
N . Taking the power N

β of

both members we obtain,

1 ≤ e−a
(
C
|Q|
|E|

)N
β

= sup
E
|h|
(
C
|Q|
|E|

)N
β
,

which proves Theorem 5.4 if supQ |h| = 1; the general case can be obtained considering h
supQ |h|

.

The rest of this section will be devoted to the proof of Theorem 5.5

5.2. Beginning of the proof of Theorem 5.5. We begin by proving the result in the case
where a

N ≤ c0 and N ≤ N0. Then we shall make a double induction on a and N .
Cas 1. a

N ≤ c0

In that case c0 − a
N ≥ 0. Since Ea(h) ⊂ Q we have,

|Ea(h)| ≤ |Q| ≤ ec0−
a
N |Q| = ec0e−

a
N |Q|.

Cas 2. n0 ≤ N ≤ N0.

Proposition 5.6. let h be a bounded continuous solution of Lh = 0 in kdQ with supQ |h| = 1

and Nh(Q) ≤ N0. Let Ea(h) = {x ∈ Q : |h(x)| ≤ e−a}. Then there exist positive constants
γ,C depending only on A, d,N0 such that,

|Ea(h)| ≤ Ce−γa|Q|.

Notice that since N ≥ n0 we have −γa ≤ − (γn0)a
N .

Proof. We have, supq∈Q Log
sup2q |h|
supq |h|

≤ N0. In particular if q = 1
2Q and since supQ |h| = 1 we

have,

sup
1
2
Q

|h| ≥ e−N0 .

We combine this with a result about the oscillations. For that we recall some facts..
17



Lemma 5.7. Let Q be a cube and λ ∈ (0, 1). Assume Lh = 0 in 3Q with supQ |h| ≥ λ and
Nh(Q) ≤ N0. There exists K > 0, b ∈ (0, 1),m0 ∈ (0, 1) depending on N0, d, A but independent
of λ such that if Q is cut into Kd equal cubes, Q = ∪iqi then,

(i) there exists a cube q0 such that,

(5.11) inf
q0
|h| ≥ m0λ,

(ii) for every cube qi we have,

(5.12) sup
qi
|h| ≥ bλ ∀i = 1, . . . ,Kd,

Proof. Since Nh
λ

(Q) = Nh(Q) and L( 1
λh) = 0 it is sufficient to prove the lemma with λ = 1

then to apply it to the function 1
λh.

Let us show (5.11). Firstly, by Lemma 4.5, if q ∩ 1
2Q 6= ∅ we have, 1

3Kq ⊂ Q. Next writing
3
K
K
3 q = q we apply (6.12) with Q = K

3 q, s = 3
K . We get,

oscqh ≤ τ(
3

K
)oscK

3
qh ≤ τ

( 3

K

)
oscQh

since the oscillation is a non decreasing function of the set. Now since Nh(Q) ≤ N0 and
supQ |h| = 1 we have sup 1

2
Q |h| ≥ e−N0 . Let x0 be such that |h(x0)| = sup 1

2
Q |h| ≥ e−N0 .

Changing h into −h we may assume that h(x0) > 0. The point x0 belongs to a certain q0.
Therefore q0 ∩ 1

2Q 6= ∅. By the above estimate we have oscq0h ≤ τ
(

3
K

)
oscQh. Now,

oscQh = sup
Q
h− inf

Q
h ≤ sup

Q
|h|+ sup

Q
(−h) ≤ 2 sup

Q
|h| ≤ 2.

It follows that oscq0h ≤ 2τ( 3
K ). Then,

inf
q0
h = sup

q0
h− oscq0h ≥ e−N0 − 2τ

( 3

K

)
≥ m0 > 0

si K >> 1. We fix K.
Let us show (5.12). Let q be a cube of the partition. By (5.3) we have Q ⊂ 2Kq ⊂ 3Q.

Taking K of the form 2`−1 we obtain, Q ⊂ 2`q. Now from the hypothesis we have,

sup2q |h|
supq |h|

≤ N0 ⇐⇒ sup
q
|h| ≥ 1

N0
sup
2q
|h|.

Iterating this inequality we get,

sup
q
|h| ≥ 1

N `
0

sup
2`q

|h| ≥ 1

N `
0

sup
Q
|h| ≥ λ

N `
0

.

�

Let us go back to the proof of Proposition 5.6.

We start from the cube Q which we cut into Kd equal cubes Q = ∪iq(1)
i . Lemma 5.7 with

λ = 1 implies that there exists i1 such that {x ∈ Q : |h(x)| < m0} ⊂ ∪i 6=i1q
(1)
i . If we remove

q
(1)
i1

it remains Kd − 1 cubes. Each cube has measure 1
Kd |Q| so |{x ∈ Q : |h(x)| < m0}| ≤(

1 − 1
Kd

)
|Q|. Let us divide each small cube q = q

(1)
i (with i 6= i1) into Kd equal cubes. We

may apply Lemma 5.7 with λ = b. So there exists q
(2)
i2
⊂ q such that inf

q
(2)
i2

h ≥ m0b. So

18



{x ∈ q : |h(x)| < m0b} ⊂ ∪i 6=i2q
(2)
i . Since m0b < m0 the set {x ∈ Q : |h(x)| < m0b} is

contenained in a union of at most (Kd − 1)× (Kd − 1) cubes having each a measure
(

1
Kd

)2
.

Therefore,

|{x ∈ Q : |h(x)| < m0b}| ≤
(
1− 1

Kd

)2
.

We pursue applying Lemma 5.7 with λ = b2, . . . , b`−1; we find that,

|{x ∈ Q : |h(x)| < m0b
`}| ≤

(
1− 1

Kd

)`+1|Q|.

Let a > 0 be so large that 1
m0
e−a < 1. There exists a unique ` ∈ N such that b`−1 ≤ 1

m0
e−a ≤

b`. By the above argument we have, |{x ∈ Q : |h(x)| < e−a}| ≤
(
1 − 1

Kd

)`+1|Q|. Now there

exists γ > 0 such that bγ = 1− 1
Kd . It follows that,

|{x ∈ Q : |h(x)| < e−a} ≤ bγ(`+1)|Q| = b2bγ(`−1)|Q| ≤ b2
(e−a
m0

)γ |Q| ≤ b2

mγ
0

e−γa|Q|.

5.3. End of the proof of Theorem 5.5. The induction argument consists in cutting the
cubes into smallest cubes and to find a cube having a small doubling index.

We begin by some useful Lemmas.

5.3.1. Distribution of the doubling indices. Let Q0 be the unit cube and f ∈ C0(Q). For
every cube q such that 2q ⊂ Q0 we have set,

Nf (q) = Log
sup2q |f |
supq |f |

.

Lemma 5.8. Let Qbe a cube, Q ⊂ Q0. Assume that Q is cut into Kd equal cubes qi where
K ≥ 24. Set Nmin = miniNf (qi). Then,

Nf (
1

2
Q) ≥ K

8
Nmin.

Proof. There exists x0 ∈ 1
2Q such that sup 1

2
Q |f | = f(x0). We have x0 ∈ qi0 for a certain i0.

Using Lemma 4.5 with m = 0 we find that 2qi0 ⊂
(

1
2 + 3

K

)
Q.

Now since Nf (qi0) ≥ Nmin and x0 ∈ qi0 we have,

sup
2qi0

|f | ≥ eNmin sup
qi0

|f | ≥ eNmin |f(x0)|.

There exists a point x1 ∈ 2qi0 such that |f(x1)| = sup2qi0
|f |. So |f(x1)| ≥ eNmin |f(x0)|. This

point x1 belongs to another cube qi1 and since Nf (qi1) ≥ Nmin we have,

sup
2qi1

|f | ≥ eNmin sup
qi1

|f | ≥ eNmin |f(x1)| ≥ e2Nmin |f(x0)|.

There exists a point x2 ∈ 2qi1 such that sup2qi1
|f | = |f(x2)|. This point satisfies,

|f(x2)| ≥ e2Nmin |f(x0)|.

By construction x1 ∈ qi1 ∩ 2qi0 ⊂ qi1 ∩
(

1
2 + 3

K

)
Q. Using Lemma 4.5 with m = 1 we see that

2qi1 ⊂
(

1
2 + 3·2

K

)
Q. So x2 ∈

(
1
2 + 3·2

K

)
Q. We construct a sequence (xj) such that |f(xj)| ≥
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ejNmin |f(x0)|, xj ∈
(

1
2 + 3j

K

)
Q. We go until j =

[
K
6

]
. Since,

1

2
+

3

K

[K
6

]
≤ 1

2
+

3

K

K

6
= 1

the last point x belongs to Q and,

sup
Q
|f | ≥ |f(x)| ≥ e

[
K
6

]
Nmin sup

1
2
Q

|f |.

Now,
[
K
6

]
≥ K

6 − 1 ≥ K
8 if K ≥ 24. It follows that, Nf (1

2Q) ≥ K
8 Nmin. �

Corollary 5.9. Let L = div(A∇) be uniformly elliptic in 2Q0 and let h be a bounded contin-
uous solution of Lh = 0 in 2Q0. There exist constants N0, J0 such that if Q ⊂ Q0 is cut into
Jd equal cubes qi with J ≥ J0 and Nh(Q) ≥ N0 then for at least one cube q we have,

Nh(q) ≤ 1

2
Nh(Q).

Proof. We know that, Nh(q) ≤ Nh(q) ≤ a1Nh(q) + a2. By the previous Lemma there exists a
cube q such that, Nh(q) ≤ 8

JNh(1
2Q) ≤ 8

J0
Nh(Q). Then,

Nh(q) ≤ 8a1

J0
Nh(Q) +

a2

N0
Nh(Q) ≤ 1

2
Nh(Q)

if J0 and N0 are large enough. �

5.3.2. Notations. We fix the ellipticity and Lipschitz constants Λ, C and we consider Lh =
div(A∇)h = 0 in 2Q0 where Q0 is a cube with volume 1. We are going to vary the parameters
N ≥ 1 and a > 0 and our aim is to prove that,

(5.13) Ea(h) = {x ∈ Q0 : |h(x)| < e−a sup
Q0

|h|} =⇒ |Ea(h)| ≤ Ce−
βa
N |Q0|.

We set,

m(u, a) = |{x ∈ Q0 : |u(x)| < e−a sup
Q0

|u|}|, M(N, a) = supm(u, a)

where the sup is taken on all operators L = div(A∇) and all u such that in Q0,

(i) A(x) is a uniformly elliptic symmetric matrix, with Lipschitz coefficients

whose the ellipticity and Lipschitz constants are controlled by Λ and C,

(ii) u is a solution of Lu = 0 in 2Q0,

(iii) Nu(Q0) ≤ N.

The goal is to prove that M(N, a) ≤ Ce−
βa
N where C and β will be independent of N.

Thanks to the Cases 1 and 2 considered before, we may assume that,

a >> 1,
a

N
> c0, N > N0 >> 1.

The first step consists in proving an induction relation on M(N, a) and the second one that
this relation implies (5.13).
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5.3.3. The induction relation. We show that there exists a0 > 0 and 0 < s < 1 such that,

(5.14) M(N, a) ≤M(
1

2
N, a−Na0) + sM(N, a−Na0).

Let u be a bounded continuous solution of Lu = 0 in 2Q0 with Nu(Q0) ≤ N. Cut Q0 into Jd

equal cubes q where J = 2`. If Nu(Q0) ≤ 1
2N then for all q ⊂ Q0 we have Nu(q) ≤ 1

2N. If

contrariwise Nu(Q0) > 1
2N ≥

1
2N0 >> 1 we can apply Corollary 5.9 and deduce that there

exists a sub cube q0 such that Nu(q0) ≤ 1
2N. Since the union Q = ∪q is disjoint (up to a set

of measure zero) we have,

m(u, a) =
∑
q

|{x ∈ q : |u(x)| < e−a sup
Q0

|u|}.

We shall show that there exists a0 > 0 depending on J (a0 ≈ `) such that,

(5.15) sup
q
|u| ≥ e−a0N sup

Q0

|u|.

Indeed by Lemma 4.5 we have Q0 ⊂ 2Jq and Jq ⊂ 2Q0, where J = 2`. By definition we have,

sup
q
|u| ≥ e−N sup

2q
|u|.

Iterating this inequality we get,

sup
q
|u| ≥ e−(`+1)N sup

2`+1q

|u| ≥ e−(`+1)N sup
Q0

|u|.

Then,

m(u, a) ≤
∑
q

|{x ∈ q : |u(x)| ≤ e−a+a0N sup
q
|u|}|,

≤ |{x ∈ q0 : |u(x)| ≤ e−a+a0N sup
q0
|u|}|+

∑
q 6=q0

|{x ∈ q : |u(x)| ≤ e−a+a0N sup
q
|u|}|,

≤ (1) + (2).

Let us estimate the term (1). The problem is that |q0| = J−d 6= 1. Let q̃0 = {y = Jx : x ∈ q0}.
Then,

|q̃0| =
∫
q̃0

dy = Jd
∫
q0

dx = Jd|q0| = 1.

Set v(y) = u(x) = u
( y
J )
)
, y ∈ q̃0. We have,

div
(
A
( y
J

)
∇yv

)
(y) =

1

J2
div
(
A
(
x)∇xu

)
(x) = 0.

Now, since J ≥ 1,

|A
( y
J

)
−A

(y′
J

)
| ≤ C |y − y

′|
J

≤ C|y − y′|,

Eventually, 〈A
( y
J

)
ξ, ξ〉 ≥ Λ|ξ|2 et Nv(q̃0) = Nu(q0) ≤ 1

2N.
21



We have,

|{y ∈ q̃0 : |v(y)| ≤ e−a+a0N sup
q̃0

|v(y)|}| =
∫
{y∈q̃0:|v(y)|≤e−a+a0N supq̃0 |v|}

dy,

= Jd
∫
{x∈q0:|u(x)|≤e−a+a0N supq0 |u|}

dx.

Since |q̃0| = 1 the left hand side is bounded by M(1
2N, a− a0N) so,

(1) ≤ J−dM(
1

2
N, a− a0N).

We use the same argument for the term (2) except that here we have Nu(q) ≤ N. We obtain,
since Jd − 1 terms are remaining in the sum,

(2) ≤ (Jd − 1)J−dM(N, a− a0N) =
(
1− 1

Jd
)
M(N, a− a0N) = sM(N, a− a0N)

with s < 1, which ends the proof of (5.14).

5.3.4. The induction relation implies Theorem 5.5. Our goal is to show now that,

(5.16) M(N, a) ≤ Ce−
βa
N

where C > 0 is large enough, β > 0 small enough, by a double induction on N and a.
Recall that (5.16) is true in the two cases : (i) N ≤ N0 ∀a > 0, (ii) a

N ≤ c0.

Without loss of generality we may assume that : N = 2`, ` ≥ `0, a = ka02`. We show that,(
(5.16) true for N = 2`−1 for all a

)
=⇒

(
(5.16) true for N = 2` for all a

)
Since a

N = ka0 the reminder (ii) shows that (5.16) is true if k ≤ k0 := c0
a0
.

We describe the induction step going from (k− 1)a02` to ka02`. By the induction we have,

(5.17)
M(2`, (k − 1)a02`) ≤ Ce−β(k−1)a0 ,

M(2`−1, (k − 1)a02`) ≤ e−2β(k−1)a0 .

We apply (5.14) and (5.16) we get, with s < 1,

M(2`, ka02`) ≤M(2`−1, (k − 1)a02`) + sM(2`, (k − 1)a02`),

≤ Ce−2β(k−1)a0 + sCe−β(k−1)a0 .

The goal is to show that,

e−2β(k−1)a0 + se−β(k−1)a0 ≤ e−kβa0

for k ≥ k0 and a certain β > 0. Dividing by e−ka0β we are left with,

e−(k−2)βa0 + seβa0 ≤ 1.

We choose β such that seβa0 ≤ 1+s
2 that is, eβa0 ≤ 1

2 + 1
2s or, βa0 ≤ Log

(
1
2 + 1

2s

)
which is

possible since 1
2 + 1

2s > 1, then we take k0 so large that e−(k−2)βa0 ≤ 1−s
2 .

�

6. Appendix

In what follows we prove Lemma 4.5 and we recall some properties of the solutions of
second order elliptic equations in divergence form.
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6.1. Proof of Lemma 4.5. Let us show (i). We may assume that,

Q =
{
x ∈ Rd :

∣∣∣∣xj − L

2

∣∣∣∣ ≤ L

2

}
q =

{
x ∈ Rd :

∣∣∣∣xj − (ij +
1

2
)
L

K

∣∣∣∣ ≤ L

2K
, 0 ≤ ij ≤ K − 1

}
.

We have first,
∣∣L

2 − (ij + 1
2) LK

∣∣ ≤ L
2 −

L
2K . Indeed,

L

2
− (ij +

1

2
)
L

K
≤ L

2
− L

2K
,

L

2
− (ij +

1

2
)
L

K
≥ L

2
− (K − 1

2
)
L

K
≥ −L

2
+

L

2K
.

If x ∈ Q we can write,∣∣∣∣x− (ij +
1

2
)
L

K

∣∣∣∣ ≤ ∣∣∣∣x− L

2

∣∣∣∣+

∣∣∣∣L2 − (ij +
1

2
)
L

K

∣∣∣∣ ≤ L

2
+
L

2
− L

2K
≤ L = 2K

L

2K
.

If x ∈ 2Kq we can write,∣∣∣∣x− L

2

∣∣∣∣ ≤ ∣∣∣∣x− (ij +
1

2
)
L

K

∣∣∣∣+

∣∣∣∣L2 − (ij +
1

2
)
L

K

∣∣∣∣ ≤ L+
L

2
− L

2K
≤ 3

L

2
.

Eventually, if x ∈ Kq we can write,∣∣∣∣x− L

2

∣∣∣∣ ≤ ∣∣∣∣x− (ij +
1

2
)
L

K

∣∣∣∣+

∣∣∣∣L2 − (ij +
1

2
)
L

K

∣∣∣∣ ≤ L

2
+
L

2
− L

2K
≤ 2

L

2
.

Let us show (ii). We may assume that Q = {x ∈ Rd : |xj − 1
2L| ≤

1
2L, 1 ≤ j ≤ d}. Then,

q =
{
x : |xj − (ij + 1

2) LK | ≤
L

2K , 1 ≤ j ≤ d
}
.

Let x ∈ q ∩
(

1
2 + 3m

K

)
Q. Assume that there exists j such that ij

L
K > 3m

K
L
2 + 3L

4 . Then,∣∣∣∣xj − L

2

∣∣∣∣ ≥ ∣∣∣∣(ij +
1

2
)
L

K
− L

2

∣∣∣∣− ∣∣∣∣xj − (ij +
1

2
)
L

K

∣∣∣∣ > 3m

K

L

2
+

3L

4
+

L

2K
− L

2
− L

2K
,

>
(3m

K
+

1

2
)
L

2
,

so x /∈
(

3m
K + 1

2)Q, which is absurd; therefore for all j we have ij ≤ 3K
4 + 3m

2 .

Likewise assume that there exists j such that ij + 1
2 <

K
4 −

1
2 −

3m
2 . Then,

xj −
L

2
= xj − (ij +

1

2
)
L

K
+ (ij +

1

2
)
L

K
− L

2
≤ L

2K
+
L

4
− L

2K
− 3mL

2K
− L

2

≤ −3mL

2K
− L

4
= −

(3m

K
+

1

2

)L
2
,

which is absurd. Therefore for all j we have ij ≥ K
4 − 1− 3m

2 . Summing up we must have,

(6.1)
K

4
− 1− 3m

2
≤ ij ≤

3K

4
+

3m

2
.

We deduce hat,

−L
4
− L

2K
− 3mL

2K
≤ (ij +

1

2
)
L

K
− L

2
≤ L

4
+

L

2K
+

3mL

2K
.

Let x ∈ 2q. We have,∣∣∣∣xj − L

2

∣∣∣∣ ≤ ∣∣∣∣xj − (ij +
1

2
)
L

K
+ (ij +

1

2
)
L

K
− L

2

∣∣∣∣ ,
≤ L

K
+
L

4
+

L

2K
+

3mL

2K
=
(3(m+ 1)

K
+

1

2

)L
2
,
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that is, 2q ⊂
(3(m+1)

K + 1
2

)
Q.

Let us show (iii). We have, from (6.1), K
4 − 1 ≤ ij ≤ 3K

4 . If x ∈ 1
3Kq we have |xj − (ij +

1
2) LK | ≤

1
3K

L
2K = L

6 so,

(ij +
1

2
)
L

K
− L

6
≤ xj ≤ (ij +

1

2
)
L

K
+
L

6
.

It follows that,(K
4
− 1

2

) L
K
− L

6
≤ xj ≤

(3K

4
+

1

2

) L
K

+
L

6
⇐⇒ 1

12
L− L

2K
≤ xj ≤

11

12
L+

L

2K
.

Therefore if K is large enough we have 0 < xj < L so x ∈ Q.

6.2. Some properties of the solutions of elliptic equations. We consider in an open
set Ω in Rd a symmetric matrix A(x) = (aij(x))1≤i,j≤d with L∞(Ω) coefficients such that,

(6.2) |
d∑

i,j=1

aij(x)ξiξj | ≤ Λ|ξ|2,
d∑

i,j=1

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω,∀ξ ∈ Rd.

We shall denote in what follows, L =
∑d

i,j=1 ∂j
(
aij(x)∂i

)
= div(A∇).

6.2.1. Weak solution, sub-solution, super-solution. A weak solution (resp. weak sub-solution
faible, resp. weak super-solution) of L is an element u ∈ H1

loc(Ω) such that,

d∑
i,j=1

∫
Ω
aij(x)∂iu(x)∂jϕ(x) dx = 0 (resp. ≤ 0, resp ≥ 0), ∀ϕ ∈ H1

0 (Ω), ϕ ≥ 0in Ω.

Remark 6.1. (i) in the définition above it is equivalent to take ϕ in C∞0 (Ω).
(ii) For smooth functions this definition is equivalent to the fact that Lu = 0 (resp.

≥ 0,≤ 0) in Ω.

Lemma 6.2. (i) Let Φ ∈W 1,∞
loc (R) be a non increasing convex function. Let u ∈ H1

loc(Ω) be
a real valued weak solution of L. Let v = Φ(u). If v ∈ H1

loc(Ω) then v is a weak sub-solution
of L.

(ii) Let Φ ∈ W 1,∞
loc (R) be a non decreasing and convex function. Let u ∈ H1

loc(Ω) be a real
valued weak sub-solution of L. Let v = Φ(u). If v ∈ H1

loc(Ω) then v is a weak sub-solution
of L.

Proof. (i) Assume first that Φ ∈ C2
loc(R). The hypotheses imply that Φ′(s) ≤ 0 and Φ′′(s) ≥ 0

for all s ∈ R. Let ϕ ∈ C∞0 (Ω). We have,

d∑
i,j=1

∫
Ω
aij ∂iv ∂j ϕdx =

d∑
i,j=1

∫
Ω
aij Φ′(u)∂iu ∂jϕdx = −

d∑
i,j=1

∫
Ω
aij ∂iu ∂j

(
− Φ′(u)ϕ) dx

−
d∑

i,j=1

∫
Ω
ϕΦ′′(u) aij ∂iu ∂ju dx = −(1)− (2).

The function ψ = −Φ′(u)ϕ is non negative and belongs to H1
0 (Ω). Since u a solution the term

(1) vanishes. The term (2) is non negative by (6.2) and the fact that Φ′′ ≥ 0. Therefore the
left hand side is non positive.
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If Φ ∈W 1,∞
loc (R) let Φε = ρε ?Φ where ρε an approximation of the identity. Then Φε is C2

and Φ′ε = ρε ? Φ′ ≥ 0. Moreover Φε is convex. Indeed let λ ∈ (0, 1). Since Φ is convex and
ρε ≥ 0 we have,

Φε(λs1 + (1− λ)s2) =

∫
ρε(y)Φ((λ(s1 − y) + (1− λ)(s2 − y)) dy,

≤ λ
∫
ρε(y)Φ((s1 − y) dy + (1− λ)

∫
ρε(y)Φ(s2 − y) dy,

≤ λΦε(s1) + (1− λ)Φε(s2).

Therefore we can apply the result obtained in the first part that is,

(6.3)

d∑
i,j=1

∫
Ω
aij ∂iΦε(u) ∂j ϕdx =

d∑
i,j=1

∫
Ω
aij ρε ? ∂iΦ(u) ∂j ϕdx ≤ 0.

By hypothesis ∂iΦ(u) ∈ L2
loc(Ω). Therefore ρε ? ∂iΦ(u) converges to ∂iΦ(u) in L2

loc(Ω). Since
ϕ ∈ C∞0 (Ω) we can pass to the limit in (6.3) and deduce that,

d∑
i,j=1

∫
Ω
aij ∂iΦ(u) ∂j ϕdx ≤ 0.

(ii) The proof is the same. We have just to notice that
∑d

i,j=1

∫
Ω aij ∂iu ∂j

(
Φ′(u)ϕ) dx ≤ 0

since u is a weak sub-solution. �

Remark 6.3. We have a similar result if Φ ∈ W 1,∞
loc ((0,+∞)) and u > 0. The proof is the

same.

Example 6.4. Consider the function defined on (0,+∞) by Φ(s) = (Log s)− that is Φ(s) = 0
if s ≥ 1, Φ(s) = −Log s if 0 < s ≤ 1. This is a continuous function on (0,+∞), C∞ on
(0, 1) ∪ (1 +∞), locally bounded, decreasing and convex. We have Φ′(s) = 0 for s > 1 and
Φ′(s) = −1

s for 0 < s < 1.

6.2.2. The Cacciopoli inequality.

Lemma 6.5. Let u ∈ H1
loc(Ω) be a positive weak sub-solution of L and ω ⊂⊂ Ω an open set.

There exists C > 0 depending only on Ω, ω, d,Λ, λ such that,∫
ω
|∇u(x)|2 dx ≤ C

∫
Ω
|u(x)|2 dx.

Proof. Let ψ ∈ C∞0 (Ω) be positive such that ψ = 1 on ω. The function ϕ = ψ2u belongs to
H1

0 (Ω) and it is positive. We have, by the definition of a sub-solution,

d∑
i,j=1

∫
Ω
aij ∂iu ∂j(ψ

2u) dx ≤ 0,

which implies that,

(1) =

d∑
i,j=1

∫
Ω
aij ψ

2 ∂iu ∂ju dx ≤ −2

d∑
i,j=1

∫
Ω
ψ uaij ∂iu ∂jψ dx = (2).
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We have,

(1) ≥ λ
∫

Ω
ψ2|∇u|2 dx.

Next,

|
d∑

i,j=1

aij ∂iu ∂jψ| = |〈A∇u,∇ψ〉| ≤ Λ|∇u||∇ψ|,

so that using the Cauchy-Schwarz inequality we obtain,

|(2)| ≤ 2Λ
(∫

Ω
ψ2|∇u|2 dx

) 1
2
(∫

Ω
u2|∇ψ|2 dx

) 1
2
.

Using these estimates and the fact that ψ = 1 on ω we deduce the lemma. �

Remark 6.6. If Ω = B(x0, R) and ω = B(x0, r) with r < R then C = C′

(R−r)2 where C ′

depends only on d,Λ, λ.

6.2.3. Moser iteration. We denote in what follows B(x0, r) the ball centered at x0 with radius
r > 0.

Theorem 6.7. Let x0 ∈ Ω and 0 < r < ρ be such that B(x0, ρ) ⊂ Ω. There exists C > 0
such that for all positive sub-solution u ∈ H1

loc(Ω) of L we have,

(6.4) ‖u‖L∞(B(x0,r)) ≤ C‖u‖L2(B(x0,ρ)).

Corollary 6.8. Let x0 ∈ Ω, r > 0 such that B(x0, 3r) ⊂ Ω. Then there exists C ≥ 1 depending
only on d, λ,Λ such that for all positive sub-solution v of L in Ω we have,

(6.5) C−1r−
d
2 ‖v‖L2(B(x0,r) ≤ ‖v‖L∞(B(x0,r) ≤ Cr

− d
2 ‖v‖L2(B(x0,2r).

Proof of the Corollary. We apply the inequality (6.4) with x0 = 0,Ω = B(0, 3), r = 1, ρ = 2
to the function u(y) = v(x0 + ry). Then u is a solution of another elliptic equation having the
same constants λ,Λ. Moreover we have,

‖v‖L2(B(x0,r)) = r
d
2 ‖u‖L2(B(0,1)) et ‖v‖L∞(B(x0,r)) = ‖u‖L2(B(0,1)).

�

Proof of Theorem 6.7 . Consider a sequence of balls Bj = B(x0, rj) with rj = r+ (ρ− r)2−j ,
so that,

Bj+1 ⊂ Bj ⊂ · · · ⊂ B0 = B(x0, ρ) andB∞ = ∩j∈NBj = B(x0, r).

The method of proof consists in proving that there exists κ > 1 such that we can estimate
‖u‖

L2κj+1
(Bj+1)

by ‖u‖
L2κj (Bj)

. The existence of κ comes from the following corollary of the

Sobolev embedding.

Lemma 6.9. Let κ ∈ [1, d
d−2 ] for d ≥ 2, κ ∈ [1,+∞) for d = 2. There exists C > 0 such that

for any ball B and any positive v ∈ H1(B) we have,

‖vκ‖2L2(B) ≤ C
(
‖∇v‖2κL2(B) + ‖v‖2κL2(B)

)
.

Proof. The Sobolev inequality implies that,

‖v‖2κL2κ(B) = ‖vκ‖2L2(B) ≤ C‖v‖
2κ
H1(B) ≤ C

(
‖∇v‖L2(B) + ‖v‖L2(B)

)2κ
.

We have just to use the inequality (a+ b)2κ ≤ 22κ(a2κ + b2κ). �
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Lemma 6.10. Let κ ∈ (1, d
d−2 ] for d ≥ 2, κ ∈ (1,+∞) for d = 2. Assume that u ∈ H1(Bj)

Let u be a weak positive sub-solution of L. Then uκ belongs to H1(Bj+1) and it is a weak
positive sub-solution of L in Bj+1. Moreover,

(6.6) ‖uκ‖2L2(Bj+1) ≤ C(22jκ + 1)‖u‖2κL2(Bj)

where C > 0 depends only d, λ,Λ, r, ρ.

Proof. Step 1. Let Φ : [0,+∞) → [0,+∞) be defined by Φ(s) = sκ. From the previous
lemma we have Φ(u) ∈ L2(Bj).

For n ∈ N∗ and s ≥ 0 set θn(s) = (s + 1
n)κ and,

Φn(s) =

{
θn(s), 0 ≤ s ≤ n,
θ′n(n)s + θn(n)− nθ′n(n), s > n.

Notice that since κ > 1 we have θ′′n(s) > 0 for all s ≥ 0. The Taylor formula implies that,

θn(s) = θn(n) + (s − n)θ′n(n) + (s − n)2

∫ 1

0
(1− λ) θ′′n(λs + (1− λ)n) dλ,

so that,

θn(n) + (s − n)θ′n(n) ≤ θn(s), s ≥ 0.

We deduce that for all s ≥ 0 we have,

(6.7) Φn(s) ≤ θn(s) ≤ 2κ(sκ +
1

nκ
) ≤ 2κ(Φ(s) + 1).

Step 2. The function Φn is C1, non decreasing, Φ′n ∈ L∞(0,+∞) Φ′′n ∈ L∞(0,+∞) and
Φn is convex. Indeed we have,

Φ′n(s) =

{
θ′n(s), 0 ≤ s ≤ n,
θ′n(n), s > n,

Φ′′n(s) =

{
θ′′n(s), 0 ≤ s ≤ n,
0, s > n.

Step 3. Φn(u) ∈ H1(Bj). First by Step 1 and (6.7) we have Φn(u) ∈ L2(Bj). Next,
∇Φn(u) = Φ′n(u)∇u ∈ L2(Bj) since u ∈ H1(Bj) and Φ′n(u) ∈ L∞(Bj).

Step 4. Φn(u) is a weak sub-solution of L. This results from the previous steps and from
Lemma 6.2.

Step 5. The sequence (Φn(u)) converges to Φ(u) in L2(Bj).
Indeed, for all s0 ≥ 0 (Φn(s0)) converges to Φ(s0). Then, from (6.7) we have, Φn(u) ≤

2κ(Φ(u) + 1). Therefore,

|Φn(u)− Φ(u)|2 ≤ C ′(Φ(u)2 + 1) ∈ L1(Bj).

We apply the dominated convergence theorem to conclude.
Step 6. Φ(u) ∈ H1(Bj+1). Indeed, first by Step 1. we have Φ(u) ∈ L2(Bj+1). Next, Step4.,

Lemma 6.5 and (6.7) imply that,

(6.8) ‖∇Φn(u)‖L2(Bj+1) ≤ C‖Φn(u)‖L2(Bj) ≤ C
′‖1 + Φ(u)‖L2(Bj).

The sequence (∇Φn(u)) is therefore uniformly bounded in L2(Bj+1). Then there exists a
subsequence such that (∇Φσ(n)(u))) converges weakly to v ∈ L2(Bj+1). On the other hand,
by Step 5. (∇Φσ(n)(u))) converges to ∇Φ(u) in D′(Bj+1). We deduce that ∇Φ(u) = v ∈
L2(Bj+1), so Φ(u) ∈ H1(Bj+1).
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Step 7. Since Φ is non decreasing, convex, and Φ(u) ∈ H1(Bj+1), Lemma 6.2 shows that
Φ(u) is a weak sub-solution of L. Since the difference between the radius of Bj and that of
Bj+1 is proportional to 2−j it follows from Lemma 6.5 and from Remark 6.6 that,∫

Bj+1

|∇Φ(u)|2 dx ≤ K22j

∫
Bj

|Φ(u)|2 dx.

Using Lemma 6.9 with v = u we deduce the inequality (6.6). �

We introduce then the sequence of functions defined by,

wj = uκ
j
.

If u ∈ H1(B0) is a positive weak sub-solution of L we obtain, by induction, that wj belongs
to H1(Bj) and it is a weak sub-solution of L in Bj . Notice that wj+1 = (wj)

κ. Set,

Nj =
(
‖wj‖L2(Bj)

) 1

κj .

Using (6.6) we get,

N2κj+1

j+1 = ‖wj+1‖2L2(Bj+1) = ‖wκj ‖2L2(Bj+1) ≤ C(22jκ + 1)‖wj‖2κL2(Bj)
= C(22jκ + 1)N2κj+1

j .

Therefore,

(6.9) N2
j+1 ≤

(
C(22jκ + 1)

) 1

κj+1
N2
j .

We have,

(6.10)
J∏
j=0

C
1

κj+1 = C
∑J
j=0

(
1
κ

)j+1

≤ C
1

κ−1 .

On the other hand set, AJ =
∏J
j=0(22jκ + 1)

1

κj+1 . Since 1 + 2jκ ≤ 2jκ+1 we have,

LogAJ =

J∑
j=0

1

κj+1
Log (1 + 2jκ) ≤ Log 2

+∞∑
j=0

jκ+ 1

κj+1
= c0.

We deduce that AJ ≤ ec0 . Using this inequality together with (6.9), (6.10) we obtain,

lim sup
j→+∞

N2
j ≤ C

1
κ−1 ec0N2

0 .

This shows that the sequence (Nj) is bounded. We shall deduce that u belongs to L∞(B(x0, r)).
Indeed set M = supNj . Then by définition of wj and Nj we have,∫

B(x0,r)
|u|2κj dx ≤

∫
Bj

|u|2κj dx ≤M2κj .

Set,
A = {x ∈ B(x0, r) : |u(x)| > 2M}.

Then,

|A|(2M)2κj ≤
∫
B(x0,r)

|u|2κj dx.

Combining these two inegalities we deduce that |A| ≤ 2−2κj for all j ∈ N which implies
that |A| = 0. This shows that M is an essential supremum of u. Therefore u ∈ L∞(B(x0, r)).
Moreover M is bounded by a multiple of N0 which is the L2 norm of u on the ball B(x0, ρ). �
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Remark 6.11. Let Q be a cube. There exists C > 0 such that for all positive weak sub-
solution u ∈ H1

loc(Ω) of L in 2Q we have,

(6.11) sup
1
2
Q

u ≤ C‖u‖L2(Q).

The proof is similar to that in the case of balls. We have just to work with the cubes
Qj = 1

2(1 + 2−j)Q. We have Qj+1 ⊂ Qj , Q0 = Q,Q∞ = 1
2Q.

6.2.4. A result about the oscillations. We recall that the oscillation of a bounded function on
a set Ω is defined by,

oscΩu = sup
Ω
u− inf

Ω
u.

Notice that if Ω1 ⊂ Ω2 we have,

oscΩ1u ≤ oscΩ2u.

Theorem 6.12. Let Q be a cube and u be a bounded continuous solution of Lu = 0 in 2Q.
Then there exists γ = γ(d,Λ) ∈ (0, 1) such that,

osc 1
2
Qu ≤ γoscQu.

Corollary 6.13. Let h be a bounded continuous solution of Lh = 0. There exists for small
s > 0 a positive function τ(s) depending only on d,A such that τ(s)→ 0 when s → 0 and for
all Q ⊂ Ω,

(6.12) oscsQh ≤ τ(s)oscQh

Proof of Theorem 6.12. The proof needs several steps.
Step1. Recall that there exists C > 0 such that for all positive weak sub-solution v ∈

H1(Q) of L we have,

(6.13) sup
1
2
Q

v ≤ C‖v‖L2(Q).

Step 2. For all ε > 0 there exists C = C(ε, d) such that for all u ∈ H1(Q) such that
|{x ∈ Q : u = 0}| ≥ ε|Q| we have,∫

Q
|u|2 dx ≤ C

∫
Q
|∇u|2 dx.

Indeed, otherwise there exists ε0 > 0 and a sequence (uk)k∈N such that:

|{x ∈ Q : uk = 0}| ≥ ε0|Q|,
∫
Q
|uk|2 dx = 1,

∫
Q
|∇uk|2 dx→ 0.

Therefore (uk)k is a bounded sequence in H1(Q). Then there exists a sub-sequence (uσ(k))k
which converges weakly to u0 in H1(Q), so by compactness, it converges strongly in L2(Q).
We have

∫
Q |u0|2 dx = 1. On the other hand, in D′(Q) the sequence (∇uσ(k))k converges to

∇u0 and to zero. So u0 is non vanishing constant. Then,∫
Q
|uσ(k) − u0|2 dx ≥

∫
{uσ(k)=0}

|uσ(k) − u0|2 dx ≥ |u0|2ε0|Q|.

The left hand side converges to zero while the right hand side is strictly positive, which is a
contradiction.
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Step 3. Let u ∈ H1(2Q) be a positive solution such that, |{x ∈ Q : u ≥ 1}| ≥ ε|Q|. Then
there exists C = C(ε, d,A) > 0 such that inf 1

2
Q u ≥ C.

Let ρ > 0 and uρ = u+ ρ. Then, uρ ≥ ρ > 0 and {x ∈ Q : u(x) ≥ 1} ⊂ {x ∈ Q : uρ(x) ≥ 1}
so,

|{x ∈ Q : uρ(x) ≥ 1}| ≥ |{x ∈ Q : u(x) ≥ 1}| ≥ ε|Q|

Set vρ = (Loguρ)
−. We have, vρ(x) =

{
0, si uρ(x) ≥ 1,
Log 1

uρ(x) si uρ(x) ≤ 1.

Since uρ ≥ ρ, vρ is non zero if and only if ρ ≤ uρ ≤ 1 so that,

0 ≤ vρ(x) ≤ Log
1

ρ
, ∀x ∈ Q.

It follows that vρ ∈ L2(Q). Let us show that vρ ∈ H1(Q). Since the function vρ is continuous

there is no jump in the derivative. Therefore, ∂jvρ(x) =

{
0, si uρ(x) ≥ 1,

−∂juρ
uρ

si uρ(x) ≤ 1.
Since

uρ ≥ ρ we deduce that,

|∂jvρ| ≤
∣∣∣∣∂juρuρ

∣∣∣∣ ≤ 1

ρ
|∂juρ| ∈ L2(Q).

On the other hand, since vρ is a positive sub-solution, (6.11) implies that,

sup
1
2
Q

vρ ≤ C
(∫

Q
v2
ρ(x) dx

) 1
2
.

Now, |{x ∈ Q : vρ(x) = 0}| = |{x ∈ Q : uρ(x) ≥ 1}| ≥ ε|Q|. Then Step 2 implies that there
exists C > 0 such that,

(6.14) sup
1
2
Q

vρ ≤ C
(∫

Q
|∇vρ(x)|2 dx

) 1
2
.

We are going to show that the right hand side is bounded. Let θ ∈ C∞0 (2Q) and θ = 1 on Q.

Take as a test function ϕ = θ2

uρ
∈ H1(Q). Then we have, skipping the summations,

0 =

∫
2Q
aij(∂iuρ)∂j

( θ2

uρ

)
dx = −

∫
2Q
θ2aij(∂iuρ)(∂juρ)

u2
ρ

dx+ 2

∫
2Q

θaij(∂iuρ)(∂jθ)

uρ
dx.

We have, ∫
2Q
θ2aij(∂iuρ)(∂juρ)

u2
ρ

dx ≥ λ
∫

2Q
θ2

∣∣∣∣∇uρuρ

∣∣∣∣2 dx,∣∣∣∣∫
2Q

θaij(∂iuρ)(∂jθ)

uρ
dx

∣∣∣∣ ≤ Λ
(∫

2Q
θ2

∣∣∣∣∇uρuρ

∣∣∣∣2 dx
) 1

2
(∫

2Q
|∇θ|2 dx

) 1
2
,

from which we deduce, since θ = 1 on Q,∫
Q

∣∣∣∣∇uρuρ

∣∣∣∣2 dx ≤ C ∫
2Q
|∇θ|2 dx.

It follows that, ∫
Q
|∇vρ|2 dx ≤

∫
Q

∣∣∣∣∇uρuρ

∣∣∣∣2 dx ≤ C ∫
2Q
|∇θ|2 dx.
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We deduce from (6.14), since vρ = (Loguρ)
− that,

sup
1
2
Q

vρ = sup
1
2
Q

(Loguρ)
− ≤ C.

Then on 1
2Q, either uρ ≥ 1 or uρ ≤ 1 and −Loguρ ≤ C, that means, uρ ≥ e−C where C is

independent of ρ. Letting ρ go to zero we obtain, inf 1
2
Q u ≥ C ′ > 0.

Step4. End of the proof. Set,

α1 = sup
Q
u, β1 = inf

Q
u, α2 = sup

1
2
Q

u, β2 = inf
1
2
Q
u.

Consider the positive solutions ,

u− β1

α1 − β1
, ou

α1 − u
α1 − β1

.

We have the following equalities,

A1 := {x ∈ Q : u(x) ≥ 1

2
(α1 + β1)} = {x ∈ Q :

u(x)− β1

α1 − β1
≥ 1

2
}

A2 := {x ∈ Q : u(x) <
1

2
(α1 + β1) = {x ∈ Q :

α1 − u(x)

α1 − β1
>

1

2
}.

Since Q = A1 ∪ A2 and A1 ∩ A2 = ∅ we have |Q| = |A1| + |A2| so either |A1| ≥ 1
2 |Q| or

|A2| ≥ 1
2 |Q|.

Case 1. Assume that,

|A1| =
∣∣∣∣{x ∈ Q :

2(u(x)− β1)

α1 − β1
≥ 1
}∣∣∣∣ ≥ 1

2
|Q|.

We apply Step 3. to the positive solution 2(u−β1)
α1−β1 . Then there exists C > 1 such that,

inf
1
2
Q

u− β1

α1 − β1
≥ 1

C

from which we deduce that,

β2 = inf
1
2
Q
u ≥ β1 +

1

C
(α1 − β1).

Case 2. Assume that,

|A2| =
∣∣∣∣{x ∈ Q :

2(α1 − u(x))

α1 − β1
≥ 1
}∣∣∣∣ ≥ 1

2
|Q|.

By the same argument we obtain,

α2 = sup
1
2
Q

u ≤ α1 −
1

C
(α1 − β1).

Since β2 ≥ β1 and α2 ≤ α1 we get,

in Case 1. α2 − β2 ≤ α1 −
(
β1 +

1

C
(α1 − β1)

)
=
(
1− 1

C

)
(α1 − β1),

in Case 2. α2 − β2 ≤ α2 − β1 ≤
(
1− 1

C

)
(α1 − β1),
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in other words, in both cases,

osc 1
2
Qu ≤

(
1− 1

C

)
oscQu.

�

Proof of Corollary 6.13. For s << 1 we can write 1
2`+1 ≤ s ≤ 1

2`
. Using Theorem 6.12 we

obtain,
osc 1

2`+1Q
u ≤ γosc 1

2`
Qu,

which implies, by induction that osc 1

2`
Qu ≤ γ`oscQu. Now, 2`+1 ≥ 1

s so that, ` ≥ 1
Log 2Log 1

s −

1 = ρ(s) and, since γ < 1 we have, γ` ≤ γρ(s). Eventually since sQ ⊂ 1
2`
Q we obtain,

oscsQu ≤ γρ(s)oscQu.

We have just to notice that ρ(s)→ +∞ when s → 0 so τ(s) = γρ(s) → 0 if s → 0. �

6.2.5. BMO norms of the eigenfunctions. Here is a Corollary of Theorem 5.5.

Proposition 6.14. There exists C > 0 such that for all ϕλ satisfying, −∆gϕλ = λϕλ we
have,

‖Log |ϕλ|‖BMO ≤ C
√
λ.

Proof. Set ψλ = Log |ϕλ|, (ψλ)Q = 1
|Q|
∫
Q ψλ(x) dx. Then,

(6.15) ‖Log |ϕλ|‖BMO = sup
Q
IQ IQ =

1

|Q|

∫
Q
|ψλ(x)− (ψλ)Q| dx.

Set cQ = Log ‖ϕλ‖L∞(Q) and JQ = 1
|Q|
∫
Q |ψλ(x)− cQ| dx. We have,

|(ψλ)Q − cQ| =
1

|Q|

∣∣∣∣∫
Q

(ψλ(x)− cQ) dx

∣∣∣∣ ≤ 1

|Q|

∫
Q
|ψλ(x)− cQ| dx = JQ.

It follows that,

IQ ≤ JQ +
1

|Q|

∫
Q
|(ψλ)Q − cQ| dx ≤ 2JQ.

We are lead to estimate JQ.
We have seen in Theorem 4.3 that the doubling index of an eigenfunction corresponding

to the eigenvalue λ is bounded by C
√
λ for λ ≥ 1.

Set for (t, x) ∈ (0, 1) × Q, u(t, x) = et
√
λϕλ. Then u is a solution of the elliptic equation

(∂2
t + ∆g)u = 0. Moreover Nu(Q) ≤ C

√
λ. Theorem 5.5 implies that,

|{(t, x) ∈ (0, 1)×Q : |u(t, x)| ≤ e−a sup
(t,x)∈(0,1)×Q

|u|}| ≤ Ce−
βa√
λ |Q|.

On the other hand, if |ϕλ(x)| ≤ e−a supQ |ϕλ| then, |u(t, x)| ≤ e−a sup(t,x)∈(0,1)×Q |u|, so that,

{x ∈ Q : |ϕλ(x)| ≤ e−a sup
Q
|ϕλ|} ≤ Ce

− βa√
λ |Q|.

Now, since cQ = Log ‖ϕλ‖L∞(Q) we have,

(6.16) |{x ∈ Q : |ϕλ(x)| ≤ e−a sup
Q
|ϕλ|}| = |{x ∈ Q : θ(x) := cQ − ψλ(x) ≥ a}| ≤ Ce−

βa√
λ |Q|.
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Therefore,

JQ =
1

|Q|

+∞∑
n=0

∫
{x∈Q:n

√
λ≤θ(x)≤(n+1)

√
λ}
θ(x) dx ≤ 1

|Q|

+∞∑
n=0

(n+ 1)
√
λ|{x ∈ Q : θ(x) ≥ n

√
λ}|.

Using (6.16) with a = n
√
λ we get,

JQ ≤
√
λ

+∞∑
n=0

(n+ 1)e−βn ≤ C
√
λ.

�
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